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0. Introduction

The Morse boundary ∂∗X of a metric space X, as introduced in [12,11], is a topological 
space that encodes the “hyperbolic-like” directions of X. It extends to all metric spaces 
Gromov’s classical concept of boundary for hyperbolic spaces [14]: when X is hyperbolic, 
∂∗X is naturally identified with the Gromov boundary of X. The Morse boundary also 
enjoys another fundamental property of Gromov boundaries, namely quasi-isometric 
invariance: quasi-isometric metric spaces have homeomorphic Morse boundaries. As a 
consequence, the Morse boundary ∂∗G of a finitely generated group G is well-defined up 
homeomorphism. Quasi-isometry invariance of ∂∗G was in fact used in [12] to distinguish 
certain right-angled Coxeter groups up to quasi-isometry.

In view of this, it is interesting to study topological features of Morse boundaries. Since 
∂∗X is not even metrisable when X is non-hyperbolic [8], it was thought until rather 
recently that “fully understanding” the topology of Morse boundaries of non-hyperbolic 
spaces would be an impossible feat. In contrast to this prediction, we show that in 
some important cases one can compute a rather sophisticated and powerful topological 
invariant, namely Čech cohomology:

Theorem A. Let G be the fundamental group of a cusped hyperbolic n–manifold for n ≥ 3. 
Then

(1) Ȟi(∂∗G, R) = {0} for 1 ≤ i ≤ n − 3;
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(2) Ȟn−2(∂∗G, R) is infinite dimensional,

where Ȟ∗ denotes reduced Čech cohomology.

The theorem follows from Theorem B below, which is more general in two ways. 
First, it covers all relatively hyperbolic groups with virtually nilpotent peripherals and 
Bowditch boundary homeomorphic to a sphere; these include all non-uniform lattices in 
rank–1 simple Lie groups. Secondly, it allows for more general coefficients.

We note that, for i = 0, our result would be equivalent to ∂∗G being connected, but 
one can even prove that ∂∗G is path connected in the setting of Theorem A. This follows 
from results in [19], as we argue in Theorem 3.2. We will actually further develop various 
tools from that paper and use them extensively in our arguments.

Our hope is that the techniques we develop to prove the main theorem will be useful 
to study Morse boundaries of other groups and to distinguish quasi-isometry classes of 
groups via their Morse boundary; see below for some concrete candidates.

Theorem A also provides the first examples of relatively hyperbolic groups with high-
dimensional Morse boundary not witnessed by an “obvious” high-dimensional hyperbolic 
subgroup. For instance, for n ≥ 4, it is still an open problem whether the fundamental 
group of a (cusped) hyperbolic n–manifold always admits codimension–1 subgroups. 
In relation to this, we mention that Cordes previously showed the existence of high-
dimensional spheres in Morse boundaries of mapping class groups [11, Theorem 4.2], 
using quasi-convex copies of Hn in the thick part of Teichmüller space constructed by 
Leininger and Schleimer [18]. It is open whether any of these corresponds to a subgroup 
of the mapping class group, and some certainly do not.

Our main theorem is in a similar line of research as the papers [7,27,26], where Morse 
boundaries of certain groups, including 3–manifold groups, are fully described. A similar 
goal seems out of reach in our case (except when n = 3, as shown in [7]), but we also 
think of our theorem as a proof of concept: even when the Morse boundary is not “fully 
describable”, powerful topological invariants can sometimes still be computed.

As a final note, there is a different topology on Morse boundaries [10] which has the 
advantage of being metrisable. However, we do not know whether analogues of our main 
theorem (or of the other results hinted at above) hold for that topology.

0.1. Distinguishing groups up to quasi-isometry

To provide further motivation for the study of Čech cohomology of Morse boundaries, 
we now construct a collection of groups that can conjecturally be distinguished up to 
quasi-isometry using this invariant, but where other usual quasi-isometry invariants do 
not seem to be helpful. We believe that the results and techniques in this paper go a 
long way towards proving the conjecture, and we point out below what is missing.

Fix for every integer n ≥ 1 the fundamental group Gn of an (n +2)–dimensional cusped 
hyperbolic manifold. Let n̄ be a finite collection of integers at least 1. Following [15, 
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Section 6], one can construct a certain finitely generated, infinite group G(n̄) with several 
properties, including that G(n̄) contains copies of all Gn with n ∈ n̄ as hyperbolically 
embedded subgroups, but G(n̄) is not (non-trivially) relatively hyperbolic.

The following conjecture would allow one to distinguish the quasi-isometry classes of 
the various G(n̄):

Conjecture 1. Ȟi(∂∗G(n̄), R) is non-trivial for i ∈ n̄ and trivial for i /∈ n̄, with 1 < i ≤
max(n̄).

The intuition behind the conjecture is that ∂∗G(n̄) should contain copies of the ∂∗Gn

for n ∈ n̄, and those should contribute cohomology in the appropriate degrees, but 
∂∗G(n̄) should otherwise be 1–dimensional. Proving the conjecture requires understand-
ing Morse boundaries of small cancellation free products (as Ḡ(n) is of this form). We 
believe this task to be of independent interest, but also not within the scope of this 
paper, so we leave it for future work. In fact, more work is still required in the context of 
classical small cancellation groups (which have non-trivial Morse boundary by [15] and 
[23], except in trivial cases).

We could not think of methods that would distinguish the quasi-isometry classes of the 
G(n̄) as n̄ varies, other than (variations of) the conjecture. For example, the groups are 
not relatively hyperbolic, which rules out a lot of tools. Similarly, they are not CAT(0), 
hierarchically hyperbolic, etc, as they are not finitely presented. Also, their asymptotic 
dimension presumably only depends on max(n̄), as should the “stable asymptotic di-
mension” introduced in [9].

0.2. Questions

There are various natural questions that arise at this point. Let us first consider those 
related to the same groups as in Theorem A.

Question 2. For G as in Theorem A, does Ȟi(∂∗G, R) vanish for all i > n − 2?

We believe that the answer is yes, and we plan future work on covering dimension of 
Morse boundaries that should imply this. Related to this, we note that it is easy to show 
that Ȟi(K, Z) = {0} for all i > n − 2 and all compact subsets K ⊆ ∂∗G. Indeed, any 
such K is homeomorphic to a closed nowhere-dense subset of Sn−1, and the latter all 
have covering dimension at most n − 2 (for instance, by [21, Theorem 19]).

As mentioned above, Theorem A holds for more general coefficients. However, certain 
natural coefficients are not covered, especially for the non-vanishing part, so in particular 
we can ask:

Question 3. For G as in Theorem A, is Ȟn−2(∂∗G, Z) non-zero?
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We believe that answering this question requires deeper understanding of discrete 
cycles (see discussion on this notion below), and hence working towards it could lead to 
interesting discoveries.

Moving on, it is natural to ask what the Čech cohomology is for Morse boundaries of 
other groups of interest. For example:

Problem 4. Compute Čech cohomology groups Ȟi(∂∗G, R) for G a mapping class group 
of a finite-type surface.

As mentioned above our hope is that our strategy will lead to the use of Morse 
boundaries as effective quasi-isometry invariants. More generally than in Conjecture 1, 
we then ask:

Problem 5. Use topological invariants of Morse boundaries such as Čech cohomology to 
distinguish quasi-isometry classes of groups.

Another natural class of groups to look into regarding this problem is that of right-
angled Coxeter groups.

Finally, looking at Čech cohomology of Morse boundaries was also partly inspired by 
the fact that, for hyperbolic groups, the Čech cohomology of the Gromov boundary has 
been fruitfully studied and contains important information about the group itself, see 
e.g. [4]. Therefore, in a different direction than the other questions, it is natural to ask:

Problem 6. What kind of information about a group can be gleaned from the Čech coho-
mology of its Morse boundary?

0.3. Outline

We deduce Theorem A as a consequence of the following more general result.

Theorem B. Let (G, P) be a relatively hyperbolic pair. Suppose that P is a nonempty 
finite collection of finitely generated, virtually nilpotent subgroups, and that the Bowditch 
boundary is homeomorphic to the (n − 1)–sphere, for some n ≥ 3. Then

(1) Ȟi(∂∗G, R) = {0} for 1 ≤ i ≤ n − 3 and any principal ideal domain R;
(2) Ȟn−2(∂∗G, F) is infinite dimensional for any field F of characteristic 0.

The assumptions of Theorem B are satisfied by all fundamental groups of non-
compact, finite-volume, complete Riemannian manifolds with pinched negative sectional 
curvature (by the Margulis lemma). These include non-uniform lattices in rank–1 simple 
Lie groups.

Theorem B is proved by combining Theorem 4.1 and Theorem 5.2 in the main body 
of the text, which deal with the vanishing and non-vanishing part, respectively.
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Our approach to these results relies heavily on the notion of discrete chains, as de-
scribed in Subsection 1.1. Indeed, we will translate vanishing and non-vanishing of Čech 
cohomology for “sufficiently nice” spaces into statements about discrete cycles being, or 
not being, boundaries of discrete chains. This is one of the main goals of Section 1, see 
in particular Corollary 1.10.

The topological spaces to which this strategy can be applied are those that we call 
super-refinable, see Definition 1.6. Roughly, these are spaces where each open cover ad-
mits a “very small” refinement. Another main goal of Section 1 is to show that (countable) 
direct limits of compact metric spaces are super-refinable, see Proposition 1.12. This is 
relevant because Morse boundaries are, by definition, direct limits of compact metric 
spaces (possibly over an uncountable index set, but not in our case).

In Section 2 we prove Proposition 2.1, which allows us to fill discrete cycles in the 
Bowditch boundary of the relatively hyperbolic groups that we are interested in. This 
result is near-obvious in the setting of Theorem A, so Section 2 is only required to reach 
the generality of Theorem B.

In Section 3 we relate Morse boundaries to Bowditch boundaries. Roughly, the strata 
of the Morse boundary are obtained by removing from the Bowditch boundary a collec-
tion of balls of specific radii around parabolic points. Hence, in order to fill a discrete 
cycle in the Morse boundary, the idea is to start with a filling in the Bowditch boundary 
(as constructed in Section 2) and “detour” it away from parabolic points. We implement 
this strategy to prove Proposition 3.6, which is one of the main results of the section. We 
note that a similar strategy was adopted in [19] to construct suitable arcs in Bowditch 
boundaries, and in fact we further develop the techniques of that paper for our purposes.

In Section 3 we also show Proposition 3.8 in support of our non-vanishing result, 
Theorem 5.2. Roughly, considering the Bowditch boundary minus a finite collection of 
parabolic points F , this proposition provides, for each homology class, a representative 
that is supported in a fixed stratum of the Morse boundary (depending on F ). In other 
words, these representatives stay away not just from F , but from all parabolic points, 
in a suitable sense.

In Section 4 we conclude the proof of our vanishing result, Theorem 4.1. The main 
point here is that the fillings constructed in Section 3 need to be improved in order to 
apply Corollary 1.10, and to do so we have to “make certain discrete chains finer”. In 
fact, we will use fillings to do so.

Finally, in Section 5 we prove our non-vanishing result, Theorem 5.2. Besides the 
above-mentioned Proposition 3.8, this boils down to Lemma 5.1, which reduces non-
vanishing of Čech cohomology (over a field of characteristic 0) to finding discrete cycles 
that are not boundaries of specific chains. This can be seen as a counterpart to Corol-
lary 1.10.

Acknowledgements. We thank the referee for their several useful comments.
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1. Discrete chains and super-refinements

In this section we define and study discrete chains and related notions. We could not 
find any papers in the literature studying the exact versions of these notions that we 
need. However, there are a few places where similar concepts have been considered. The 
closest we could find is [2], where the authors define discrete homology groups at a given 
scale, and then consider a direct limit as the scale goes to infinity. Instead, here we are 
interested in the behaviour at small scales.

1.1. Čech cohomology and discrete chains

Let X be a topological space and let O be an open cover of X.
We denote by N(O) the nerve of O, and by C∗(N(O)) its chain complex of simplicial 

chains with Z–coefficients. In other words, for each n ≥ 0, the group Cn(N(O)) is the 
free Z–module generated by ordered (n + 1)–tuples [O0, . . . , On], where O0, . . . , On ∈ O
and O0 ∩ · · · ∩On �= ∅.

If O′ < O is a refinement, there are well-defined maps in homology and cohomology 
(see e.g. part (1) of Lemma 1.8 below):

H∗(N(O′),Z) → H∗(N(O),Z), H∗(N(O),Z) → H∗(N(O′),Z).

The Čech homology3 and cohomology of X are then defined as:

Ȟ∗(X,Z) = lim←−−
O

H∗(N(O),Z), Ȟ∗(X,Z) = lim−−→
O

H∗(N(O),Z),

where the two limits are taken over the directed set of open covers O of X with the order 
given by refinements. Čech (co)homology with other coefficients is defined analogously.

Rather than working with open covers and their nerves, it is often simpler to study 
discrete chains, which we now introduce. We will relate them to Čech (co)homology in 
Subsection 1.2.

We define a chain complex C∗(X) as follows. For each n ≥ 0, the Z–module Cn(X)
is freely generated by ordered (n + 1)–tuples [x0, . . . , xn], where x0, . . . , xn ∈ X. As 
customary, the boundary operator is the Z–linear extension of:

∂[x0, . . . , xn] =
n∑

i=0
(−1)i · [x0, . . . , x̂i, . . . , xn].

We refer to tuples [x0, . . . , xn] as discrete n–simplices, and to general elements of Cn(X)
as discrete n–chains. A discrete chain c is a cycle if ∂c = 0, and a boundary if c = ∂d for 

3 We caution the reader that Čech homology fails to satisfy the Eilenberg–Steenrod exactness axiom and, 
thus, it is not a homology theory as such. Instead, Čech cohomology does constitute an honest cohomology 
theory.
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some discrete chain d. It is convenient to also introduce the module of reduced n–chains 
C n(X): for n ≥ 1 we have C n(X) = Cn(X), while C 0(X) is the kernel of the coefficient-
sum map C0(X) → Z.

The support of a discrete simplex [x0, . . . , xn] is the set {x0, . . . , xn} ⊆ X. If c =
∑

i σi

is a discrete chain, written as a sum of discrete simplices without any cancellations, we 
define its support as supp(c) :=

⋃
i supp(σi).

With a slight abuse, we will often confuse a discrete chain c with its support. For 
instance, for a subset A ⊆ X, we will write “c ⊆ A” meaning “supp(c) ⊆ A”. Similarly, 
we will speak of “vertices x ∈ c”, rather than “points x ∈ supp(c)”.

We will often be interested in chains that are “small” relative to a fixed cover, in one 
of two possible different ways, as described in the following definition.

Definition 1.1. Given an open cover O of X, a subset A ⊆ X is O–tiny if there exists 
O ∈ O such that A ⊆ O. A discrete chain is O–tiny if its support is. A discrete chain 
is O–fine4 if all of its simplices are O–tiny. We denote by C∗(X, O) ⊆ C∗(X) the chain 
subcomplex of O–fine discrete chains. For a refinement O′ < O, we have C∗(X, O′) ⊆
C∗(X, O).

Although not strictly necessary for our purposes, the following definitions are helpful 
to illustrate our viewpoint on Čech (co)homology. Let H∗(X, O) denote the homology 
of the chain complex C∗(X, O). For each refinement O′ < O, the inclusion C∗(X, O′) ⊆
C∗(X, O) gives rise to a homomorphism H∗(X, O′) → H∗(X, O). We can then define 
the discrete homology of X as:

H∗(X) := lim←−−
O

H∗(X,O),

where the inverse limit is again taken over the directed set of open covers O of X
with the order given by refinements. For nice spaces, we will show in Corollary 1.9 that 
H∗(X) is naturally isomorphic to Ȟ∗(X, Z) (so discrete homology also does not satisfy 
the Eilenberg–Steenrod axioms).

We conclude this subsection with a couple of definitions and an observation, which 
will be used multiple times throughout the paper.

Definition 1.2 (Cones). For a discrete simplex σ = [x0, . . . , xn] and a point x ∈ X, the 
cone over σ from x is the simplex cone(x, σ) := [x, x0, . . . , xn]. In particular, if σ is the 
empty −1–simplex, we define cone(x, σ) := [x].

For a discrete chain c =
∑

j σj , where the σj are discrete simplices, the cone over c
from x is the chain cone(x, c) :=

∑
j cone(x, σj).

4 In the literature, it is common to refer to both O–tiny subsets and O–fine chains simply as “O–small”. 
We prefer to use distinct terms for the two concepts, also to highlight the analogy between O–fine chains 
and “δ–fine” chains introduced in Subsection 1.4.
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Lemma 1.3. Let c be a discrete chain in a topological space X. For every point x ∈ X, 
we have ∂ cone(x, c) = c − cone(x, ∂c). In particular, if c ∈ C n(X) is a reduced cycle, 
then ∂ cone(x, c) = c.

Proof. For a discrete simplex σ, a simple computation shows that ∂ cone(x, σ) = σ −
cone(x, ∂σ). The statement about general chains then follows from linearity of the coning 
operator. �
Definition 1.4 (Face complex). Let c =

∑
i σi be a discrete chain, written as a sum of 

discrete simplices without cancellations. The face complex of c is the chain subcomplex 
F∗(c) ⊆ C∗(X) generated by the σi and all their lower-dimensional faces.

1.2. Super-refinements

Let X be a topological space.
The following strengthening of the notion of refinement will be crucial for us to relate 

properties of nerves of covers to properties of discrete chains, and hence to reduce Čech 
cohomology statements to statements about discrete chains.

Definition 1.5. Let O be an open cover of X. An open cover O′ is a super-refinement of 
O (denoted O′ 
 O) if, for each x ∈ X, there exists O ∈ O with:

⋃
{O′ | O′ ∈ O′, x ∈ O′} ⊆ O.

An open set O satisfying the above inclusion is called a parent of x.

Definition 1.6. A topological space is super-refinable if every open cover admits a super-
refinement.

It is readily seen that compact metric spaces are super-refinable due to the existence 
of Lebesgue numbers for covers (that is, the fact that, for every open cover, there exists 
ε > 0 such that every ε–ball is contained in an open set from the cover). We will show 
in Subsection 1.3 that countable direct limits of compact metrisable spaces are super-
refinable as well.

In order to connect discrete chains in X to simplicial chains in nerves of open covers 
of X, we introduce the following terminology.

Definition 1.7. Let O be an open cover of X.

• A map f : O → X is a child map if f(O) ∈ O for all O ∈ O.

Let O′ < O be a refinement.
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• A map f : O′ → O is a spouse map if O′ ⊆ f(O′) for all O′ ∈ O′.

Suppose now that O′ 
 O is a super-refinement.

• A map f : X → O is an (O′, O)–parent map if O′ ⊆ f(x) for all O′ ∈ O′ with x ∈ O′

(that is, f(x) is a parent of x according to Definition 1.5).
• A map f : X → X is an (O′, O)–sibling map if it is the composition of an 

(O′, O)–parent map X → O and a child map O → X.

Each of the maps appearing in Definition 1.7 naturally induces a chain map between 
the corresponding chain complexes. This is the content of the next lemma.

Lemma 1.8. Let O be an open cover of X with a refinement O′ < O.

(1) Every spouse map f : O′ → O naturally induces a chain map f∗ : C∗(N(O′)) →
C∗(N(O)). If g : O′ → O is another spouse map, then f∗ and g∗ are chain-homotopic.

Suppose now that O′ 
 O is a super-refinement.

(2) Every child map f : O′ → X naturally induces a chain map f∗ : C∗(N(O′)) →
C∗(X, O). If g : O′ → X is another child map, then f∗ and g∗ are chain-homotopic.

(3) Every (O′, O)–parent map f : X → O naturally induces a chain map f∗ : C∗(X, O′) →
C∗(N(O)). If g : X → O is another (O′, O)–parent map, then f∗ and g∗ are chain-
homotopic.

Finally, consider a chain of super-refinements O′′ 
 O′ 
 O.

(4) Every (O′′, O′)–sibling map f : X → X naturally induces a chain map f∗ : C∗(X,

O′′) → C∗(X, O) and this is chain-homotopic to the standard inclusion.

Proof. Part (1) is classical (see e.g. [6, Lemma 10.4.2]) and the proof of the other three 
parts is very similar, so we will omit most of the computations.

Recall that Cn(X, O) is the free Z–module generated by O–tiny discrete sim-
plices [x0, . . . , xn], while Cn(N(O)) is the free Z–module generated by the elements 
[O0, . . . , On], where O0, . . . , On ∈ O and O0 ∩ · · · ∩On �= ∅.

Part (1). The chain map fn : Cn(N(O′)) → Cn(N(O)) takes [O′
0, . . . , O

′
n] to 

[f(O′
0), . . . , f(O′

n)]. If g :
O′ → O is another spouse map, a chain homotopy Hn : Cn(N(O′)) → Cn+1(N(O))
between f∗ and g∗ is given by the formula:

Hn[O′
0, . . . , O

′
n] :=

n∑
(−1)i · [f(O′

0), . . . , f(O′
i), g(O′

i), . . . , g(O′
n)] .
i=0
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Part (2). The chain map fn : Cn(N(O′)) → Cn(X, O) takes [O′
0, . . . , O

′
n] to 

[f(O′
0), . . . , f(O′

n)]. We prove that fn is well-defined. Since O′ is a super-refinement 
of O, there exists a parent O ∈ O of some point x ∈ O′

0 ∩ · · · ∩O′
n, and we have:

{f(O′
0), . . . , f(O′

n)} ⊆ O′
0 ∪ · · · ∪O′

n ⊆ O.

Thus, the discrete simplex [f(O′
0), . . . , f(O′

n)] is indeed O–tiny.
Now, if g : O′ → X is another child map, a chain homotopy Hn : Cn(N(O′)) →

Cn+1(X, O) between f∗ and g∗ is given by the formula:

Hn[O′
0, . . . , O

′
n] :=

n∑
i=0

(−1)i · [f(O′
0), . . . , f(O′

i), g(O′
i), . . . , g(O′

n)] .

This map is again well-defined because all f(O′
i) and g(O′

i) lie in any parent O ∈ O
of any point of O′

0 ∩ · · · ∩ O′
n. We leave to the reader the straightforward check that 

∂Hn + Hn−1∂ = gn − fn for all n ≥ 0.
Part (3). The chain map fn : Cn(X, O′) → Cn(N(O)) takes [x0, . . . , xn] to [f(x0), . . . ,

f(xn)]. If {x0, . . . , xn} is contained in O′ ∈ O′, then

f(x0) ∩ · · · ∩ f(xn) ⊇ O′ �= ∅,

by definition of parent map. This proves that fn is well-defined.
If g : X → O is another parent map, a chain homotopy Hn : Cn(X, O′) → Cn+1(N(O))

between f∗ and g∗ is given by the formula:

Hn[x0, . . . , xn] :=
n∑

i=0
(−1)i · [f(x0), . . . , f(xi), g(xi), . . . , g(xn)] .

Again, this is a well-defined map because all f(xi) and g(xi) contain any O′ ∈ O′

containing all xi. As above, we have ∂Hn + Hn−1∂ = gn − fn for all n ≥ 0.
Part (4). The chain map fn : Cn(X, O′′) → Cn(X, O) takes [x0, . . . , xn] to [f(x0), . . . ,

f(xn)]. Let us show that this is well-defined. First, by definition of sibling map, there 
exists an (O′′, O′)–parent map F : X → O′ such that f(x) ∈ F (x) for all x ∈ X. If 
{x0, . . . , xn} is O′′–tiny, we have F (x0) ∩ · · · ∩ F (xn) �= ∅ as in part (3). It follows that 
F (x0) ∪ · · · ∪ F (xn) is O–tiny as in part (2). Since this union contains all f(xi), we 
conclude that the discrete simplex [f(x0), . . . , f(xn)] is indeed O–tiny.

Now, if g : X → X is another sibling map, a chain homotopy Hn : Cn(X, O′) →
Cn+1(X, O) between f∗ and g∗ is given by the formula:

Hn[x0, . . . , xn] :=
n∑

(−1)i · [f(x0), . . . , f(xi), g(xi), . . . , g(xn)] .

i=0
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The map Hn is well-defined by the argument in the previous paragraph, and the usual 
computation shows that ∂Hn + Hn−1∂ = gn − fn for all n ≥ 0.

This concludes the proof of the lemma. �
Part (1) of Lemma 1.8 shows that each refinement O′ < O gives rise to well-defined 

maps between the (co)homology groups of the nerves of O and O′, which we used to 
define the Čech (co)homology groups of X in Subsection 1.1.

The rest of Lemma 1.8 allows us to relate the Čech homology of X to its discrete 
homology, provided that X is super-refinable. While we will not need the next result 
(preferring instead its reformulation given by Corollary 1.10), it motivates our approach 
to Čech (co)homology.

Corollary 1.9. If X is super-refinable, its Čech homology Ȟ∗(X, Z) is naturally isomor-
phic to its discrete homology H∗(X).

Proof. Recall that we have:

Ȟ∗(X,Z) = lim←−−
O

H∗(N(O),Z), H∗(X) = lim←−−
O

H∗(X,O).

For each super-refinement O′ 
 O, parts (2) and (3) of Lemma 1.8 give maps:

H∗(N(O′),Z) → H∗(X,O), H∗(X,O′) → H∗(N(O),Z).

In addition, for a chain of super-refinements O′′ 
 O′ 
 O, parts (1) and (4) of 
Lemma 1.8 guarantee that the compositions

H∗(N(O′′),Z) → H∗(X,O′) → H∗(N(O),Z),

H∗(X,O′′) → H∗(N(O′),Z) → H∗(X,O).

coincide with the standard homomorphisms.
Since X is super-refinable, the above maps give rise to homomorphisms

Ȟ∗(X,Z) → H∗(X), H∗(X) → Ȟ∗(X,Z),

and both their compositions are the identity. This proves the corollary. �
In order to show vanishing of Ȟn(X, Z) and Hn(X) for n ≥ 1, it is sometimes more 

practical to check that X satisfies the following (a priori stronger) condition5:

(DAn) for each open cover O there exists a refinement O′ such that every discrete 
O′–fine n–cycle is the boundary of a discrete O–fine (n + 1)–chain.

5 The letters D and A stand for Discrete and Acyclic.
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We only define (DAn) as above for n ≥ 1, declaring instead (DA0) to be vacuous.

Corollary 1.10. Let X be super-refinable and let n ≥ 1. Let F be a field and R a principal 
ideal domain.

(1) If X satisfies (DAn), then Ȟn(X, Z) = {0} and Ȟn(X, F) = {0}.
(2) If X satisfies (DAn) and (DAn−1), then Ȟn(X, R) = {0}.

Proof. Suppose that X satisfies (DAn) and let O be an open cover of X.
For part (1), we want to show that there exists a refinement O′ < O and a spouse 

map s : O′ → O such that the induced maps

sn : Hn(N(O′),Z) → Hn(N(O),Z), sn : Hn(N(O),F) → Hn(N(O′),F)

are trivial. It then follows by definition of Čech (co)homology that Ȟn(X, Z) = 0 and 
Ȟn(X, F) = 0.

Consider a chain of refinements O′ 
 Õ′ < Õ 
 O, where Õ′ < Õ is a refine-
ment provided by (DAn). Let f : O′ → X be a child map and let g : X → O be an 
(Õ, O)–parent map. Let f∗, g∗ be the chain maps provided by Lemma 1.8. Observe that 
s := g ◦ f : O′ → O is a spouse map.

Now, let c ∈ Cn(N(O′)) be a cycle. Then f∗(c) ∈ Cn(X, Õ′) is an Õ′–fine discrete 
cycle and hence there exists an Õ–fine discrete chain d with f∗(c) = ∂d. Since f∗ and g∗
are chain maps, we have that:

∂g∗(d) = g∗(∂d) = g∗f∗(c) = s∗(c).

This shows that the induced map in homology sn : Hn(N(O′), Z) → Hn(N(O), Z) is 
trivial. The induced map in cohomology sn : Hn(N(O), F) → Hn(N(O′), F) is then also 
trivial, by the universal coefficients theorem. This proves part (1).

In order to prove part (2), let the refinement O′ and the spouse map s : O′ → O
be those constructed in part (1). Then consider a refinement O′′ < O′ and a spouse 
map t : O′′ → O obtained by applying the same procedure to the cover O′. We will 
show that, when X satisfies (DAn−1), the spouse map s ◦ t induces the trivial map 
Hn(N(O), R) → Hn(N(O′′), R).

The universal coefficients theorem (in the form stated e.g. in [24, Section 5.5, Theo-
rem 3]) gives the following commutative diagram with exact rows:

0 Ext(Hn−1(N(O),Z),R) Hn(N(O),R) Hom(Hn(N(O),Z),R) 0

0 Ext(Hn−1(N(O′),Z),R) Hn(N(O′),R) Hom(Hn(N(O′),Z),R) 0

0 Ext(Hn−1(N(O′′),Z),R) Hn(N(O′′),R) Hom(Hn(N(O′′),Z),R) 0

(sn−1)∗ sn (sn)∗

(tn−1)∗ tn (tn)∗
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Since X satisfies (DAn) and (DAn−1), we have shown that the maps in homology sn
and tn−1 are trivial, provided that n ≥ 2. Hence, in the above diagram, the left-hand 
map (tn−1)∗ and the right-hand map (sn)∗ are trivial. This latter statement also holds 
for n = 1, since homology is free in degree 0, which leads to vanishing of the Ext terms.

A quick diagram chase then shows that the composition tn ◦ sn is trivial, as re-
quired. �

We conclude this subsection with the following observation needed in Section 4.

Remark 1.11. Consider an open cover O and a double super-refinement O′′ 
 O′ 
 O. 
Then, for any pairwise-intersecting collection {O′′

i }i∈I ⊆ O′′, there exists some O ∈ O
containing all O′′

i .
Indeed, fixing some i0 ∈ I, there exist elements O′

i ∈ O′ with O′′
i0
∪ O′′

i ⊆ O′
i, since 

O′′ 
 O′ and O′′
i0
∩ O′′

i �= ∅. Now, all O′
i contain any given point of O′′

i0
, hence their 

union is contained in an element of O, again because O′ 
 O.

1.3. Direct limits of compact spaces

We will prove the vanishing part of Theorems A and B by checking that our Morse 
boundaries satisfy condition (DAn) in the required range and applying Corollary 1.10. 
Thus, we first need to show that these spaces are super-refinable, which is the goal of 
this subsection (Proposition 1.12).

Recall that, given a sequence of topological spaces Xn ⊆ Xn+1, the direct limit X =
lim−−→Xn is the union of the Xn, endowed with the topology where U ⊆ X is open if and 
only if U ∩Xn is open for all n. All our Morse boundaries will be spaces of this form.

Proposition 1.12. Any countable direct limit of compact metrisable spaces is super-
refinable.

Before proving the proposition, we need to make a couple of observations. First, we 
can and will assume in the following discussion that the union of the Xn is equipped 
with a single metric d(·, ·) that induces the topology of each Xn. (Of course, we stress 
that d(·, ·) does not induce the topology of the direct limit X, which is strictly finer.)

In general, the existence of the metric d(·, ·) is guaranteed by the following result; 
see [16, Lemma 1.4] or [25] for short proofs. For our Morse boundaries, we will actually 
simply consider the restriction of a visual metric on the Bowditch boundary.

Lemma 1.13. Let A be a closed subspace of a compact metrisable space B. Every metric 
dA : A ×A → R inducing the topology of A can be extended to a metric dB : B ×B → R

inducing the topology of B.

The following will be our main recipe to construct open covers of countable direct 
limits of compact metrisable topological spaces.
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Construction 1.14. Consider a countable direct limit X = lim−−→Xn of metric spaces and 
a sequence of positive reals ε = (εn)n≥0. We describe a family U (ε) of open sets of X
that will come in handy multiple times in the future.

There is an element Up ∈ U (ε) for each point p ∈ X, constructed as follows. If 
p ∈ Xk − Xk−1 for some k ≥ 0, set Up(n) = ∅ for n < k, and define Up(k) as the 
open εk–ball around p within Xk. For n > k, we define iteratively Up(n) as the open 
εn–neighbourhood of Up(n − 1) within Xn. Finally, set Up :=

⋃
n Up(n).

Note that, since Up(n) is an open subset of Xn, we have that Up ∩Xn is the union of 
the open sets Up(m) ∩Xn for m ≥ n, and hence it is open. This shows that Up is open 
in X, by definition of the direct limit topology.

Note that it is possible for Up(n) to be strictly contained in the intersection Up ∩Xn. 
For instance, if p ∈ X0, then Up ∩X0 is a ball of radius 

∑
n≥0 εn, whereas Up(0) is just 

an ε0–ball. It is also useful to introduce the notation Uk(ε) := {Up | p ∈ Xk − Xk−1}
and U n

k (ε) = {Up(n) | p ∈ Xk −Xk−1}.

If U is a family of subsets of a topological space X and A ⊆ X is another subset, it is 
convenient to write:

U [A] :=
⋃

U∈U, U∩A	=∅
U ;

here U denotes the closure of U in X. We are finally ready to prove Proposition 1.12.

Proof of Proposition 1.12. As observed above, it suffices to consider a sequence of iso-
metric embeddings of compact metric spaces · · · ↪→ Xn ↪→ Xn+1 ↪→ . . . with n ≥ 0. Let 
X = lim−−→Xn be their direct limit. Let O be an open cover of X. Our aim is to construct 
a super-refinement of O.

We rely on Construction 1.14, for a sequence ε = (εn)n≥0 to be determined later. For 
every k ≥ 0, choose a finite subset Ik ⊆ Xk − Xk−1 such that the εk–balls {Ui(k) ∈
U k

k (ε) | i ∈ Ik} cover Xk −Xk−1. (For instance, cover Xk by finitely many εk/2–balls, 
select only those that intersect Xk−Xk−1, for each of them pick a point in its intersection 
with Xk −Xk−1, then take the finitely many εk–balls with these centres.)

Define I := �n≥0 In and Un
k := {Ui(n) | i ∈ Ik} (that is, the elements of Un

k are open 
sets of Xn constructed as in Construction 1.14 starting from the points of Ik). We say 
that a finite subset J ⊆ I0 ∪ · · · ∪ Ik is k–good if J ∩ Ik �= ∅ and the union of closures ⋃

j∈J Uj(k) is contained in some O ∈ O; we fix one such open set OJ for every good set 
J .

Claim. There exist numbers εn, ηn > 0 such that the following hold for n ≥ 0.

(A) If B is an ηn–ball in Xn, then the set 
(
Un

0 ∪ · · ·∪Un
n

)
[B] is contained in an element 

of O.
(B) For every 0 ≤ k < n and every k–good set J , we have 

⋃
j∈J Uj(n) ⊆ OJ .
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First, assuming the Claim, we construct a super-refinement of O. For each i ∈ Ik, set 
Vi := Ui −Xk−1 and define V = {Vi | i ∈ I}. It is clear that this is an open cover of X. 
Let us show that it super-refines O.

Consider a point x ∈ Xn and let J ⊆ I be the subset of indices j such that x ∈ Vj . 
Note that J ⊆ I0∪· · ·∪In, so J is finite. It follows that, for some m > n, the point x lies in 
Uj(m) for all j ∈ J . By property (A), there exists O ∈ O containing 

⋃
j∈J Uj(m). Thus, 

J is k–good for some k and property (B) ensures that OJ ∈ O contains 
⋃

j∈J Uj(m′) for 
all m′ > k. This implies that OJ contains all Uj with j ∈ J , hence all Vj with j ∈ J , as 
we wanted.

Note that we have only used property (A) with the ball B replaced by a single point, 
and the need for closures of the Uj(n) is also not apparent yet. The full strength of 
property (A) is needed in the proof of the Claim.

We conclude by proving the Claim, that is, by showing that εn, ηn can be chosen 
in a way that (A) and (B) hold. Let λn be a Lebesgue number for the open cover 
{O ∩Xn | O ∈ O} of Xn. We proceed by induction on n.

Consider the base step n = 0. Property (B) holds vacuously in this case (note the 
“k < n”). Regarding property (A), consider an η0–ball B ⊆ X0 and recall that U0

0 is 
a finite cover of X0 by ε0–balls. The diameter of U0

0 [B] is at most 4ε0 + 2η0. Choosing 
ε0, η0 with 4ε0 + 2η0 < λ0, we ensure that U0

0 [B] is contained in an element of O.
For the inductive step, suppose that ε0, . . . , εn and η0, . . . , ηn have been chosen to 

satisfy (A) and (B), and let us look for suitable values of εn+1 and ηn+1.
Observe that there are only finitely many k–good sets J with k ≤ n and, for each of 

them, we have

d
( ⋃

j∈J

Uj(n) , Xn+1 −OJ

)
> 0,

as this is the distance between two disjoint compact sets. Thus, we can choose a number 
δn+1 > 0 that is smaller than all these distances. We then choose εn+1 and ηn+1 so that 
the following inequalities hold:

4εn+1 + 2ηn+1 < λn+1, 2εn+1 + 2ηn+1 < ηn, 3εn+1 + 2ηn+1 < δn+1.

This immediately guarantees that property (B) is satisfied, as εn+1 < δn+1 and each 
Uj(n + 1) is the εn+1–neighbourhood of Uj(n) in Xn+1.

Regarding property (A), consider an ηn+1–ball B ⊆ Xn+1. Let J ⊆ I0 ∪ · · · ∪ In be 
the set of indices j such that Uj(n + 1) ∩B �= ∅.

If J = ∅, then 
(
Un+1

0 ∪ · · · ∪ Un+1
n+1

)
[B] = Un+1

n+1 [B]. As in the base step, this is a set of 
diameter at most 4εn+1 +2ηn+1 < λn+1, which ensures that it is contained in an element 
of O.

If instead J �= ∅, we can choose for every j ∈ J a point xj ∈ Uj(n) with d(xj , B) <
εn+1. The set {xj | j ∈ J} is contained in Xn and it has diameter at most 2εn+1+2ηn+1 <
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ηn, so it is contained in an ηn–ball B′ ⊆ Xn. For every j ∈ J , the set Uj(n) meets B′, 
so property (A) for n implies that J is k–good for some k ≤ n. Let OJ ∈ O be the 
corresponding open set.

Now, the set 
(
Un+1

0 ∪· · ·∪Un+1
n+1

)
[B] is contained in the (3εn+1+2ηn+1)–neighbourhood 

of 
⋃

j∈J Uj(n) within Xn+1. Since 3εn+1+2ηn+1 < δn+1, this set is contained in OJ ∈ O, 
as required. �
1.4. Discrete chains in metric spaces

Let (X, ρ) be a metric space. In this short subsection, we introduce some important 
notation relating to chains in the presence of a metric.

If c is a discrete or singular chain in X, we write diam(c) := diam(supp(c)) for short. 
With a slight abuse, we will sometimes also write things like “ρ(x, c) ≥ 1” for a point 
x ∈ X, rather than the more correct “ρ(x, supp(c)) ≥ 1”.

If c =
∑

i σi, written as a sum of discrete (resp. singular) simplices without cancella-
tions, we define

fine(c) := sup
i

diam(σi).

If fine(c) ≤ δ for some δ > 0, we say that c is δ–fine.

1.5. Discretisation of singular simplices

Given a singular chain d, one can associate to it a discrete chain that we will denote 
by disc(d), informally by only keeping track of the vertices. More precisely, we have the 
following.

Definition 1.15. If σ : Δi → X is a singular simplex, then disc(σi) is the discrete simplex 
[x0, . . . , xi], where xi is the image under σ of the i–th vertex of the standard simplex 
Δi. This definition is then extended linearly; namely, for d =

∑
ciσi we set disc(d) :=∑

ci disc(σi).

Lemma 1.16. Let X be a metric space and let d̂ ⊆ X be a singular chain. Then there 
exists a discrete chain d ⊆ X with ∂d = disc(∂d̂) and fine(d) ≤ 2 fine(∂d̂).

Proof. It suffices to perform an iterated relative barycentric subdivision of d̂ without 
ever altering the cell structure on ∂d̂. More precisely, recall that, in the usual barycentric 
subdivision, the new vertices are the barycentres of all simplices. Instead, in this relative 
subdivision, the new vertices are the barycentres of simplices that are not part of ∂d̂, as 
well as the vertices of simplices that are part of ∂d̂.

Iterating this relative subdivision procedure, the fineness of d̂ converges to the fineness 
of ∂d̂. Thus, we can just take d = disc(d̂′) for a sufficiently high subdivision d̂′ of the 
original d̂. �
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2. Filling discrete cycles in the Bowditch boundary

The goal of this section is to prove Proposition 2.1 below, which gives a way of filling 
cycles in the Bowditch boundary of certain relatively hyperbolic groups. We now recall 
some background on relatively hyperbolic groups, introduce the setup and state the 
proposition. We note that no other results from this section are used in the rest of the 
paper.

2.1. Cusped space and Bowditch boundary

We now briefly discuss cusped spaces and their boundaries, and we refer the reader to 
[19, Subsection 2.1] for more details, as we will mostly use techniques from that paper. 
These notions were first considered in [5].

Given a connected graph Γ, one can construct a hyperbolic space, called the combina-
torial horoball H(Γ), by gluing strips of the hyperbolic plane onto the edges of the graph, 
see [19, Definition 2.1]. We refer to the copy of the graph contained in the combinatorial 
horoball as the horosphere, and we recall that, for x, y ∈ Γ, we have that dH(Γ)(x, y) and 
2 log(dΓ(x, y)) differ by a uniformly bounded amount, see [19, Lemma 2.2].

A relatively hyperbolic group pair (G, P) is a finitely generated group G together 
with a collection of finitely generated subgroups P, called peripheral subgroups, such 
that one obtains a hyperbolic space by gluing combinatorial horoballs onto the cosets of 
the peripheral subgroups, see [19, Definition 2.3]. This glued-up space is the cusped space
X (G, P ), and its Gromov boundary is the Bowditch boundary ∂B(G, P). The combina-
torial horoballs inside the cusped space lie at bounded Hausdorff distance from horoballs 
as defined in terms of Busemann functions, see [5, Lemma 2.5].

2.2. Setup and statement of main proposition

Let (G, P) be a relatively hyperbolic pair. We assume that G is finitely generated 
and that P consists of finitely many finitely generated, virtually nilpotent subgroups. In 
addition, we assume that the Bowditch boundary S := ∂B(G, P) is homeomorphic to a 
sphere Sk+1 for some k ≥ 1.

For a, b > 0 and K ≥ 1, we write a ∼K b as shorthand for 1/K ≤ a/b ≤ K. As 
customary, we also write a ∨ b := max{a, b} and a ∧ b := min{a, b}.

Let (X , dX ) be the cusped space for (G, P) and let δ0 be its hyperbolicity constant. 
For simplicity we choose, for all points x ∈ X and y ∈ X ∪ ∂X , a geodesic from x to y, 
which we denote by [x, y].

Let ε0 be a parameter for visual metrics, which can be chosen depending only on 
δ0 (e.g. as in [3, Proposition III.H.3.21]). Denote by ρx the visual metric on S = ∂X
based at a point x ∈ X . There exists a constant C (depending only on δ0, ε0) such that 
ρx(ξ, ξ′) ∼C e−ε0(ξ|ξ′)x for all x ∈ X and ξ, ξ′ ∈ ∂X . Here (·|·)x denotes Gromov products 
based at x. Choose a basepoint o ∈ X and set ρ := ρo.
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For each parabolic point p ∈ ∂X , denote by Hp ⊆ X the corresponding horoball and 
by Kp ⊆ Hp its boundary horosphere. Choose a point ep ∈ Kp nearest to o and set 
rp := e−ε0dX (o,Hp).

If Z is a metric space, x ∈ Z and 0 < r1 < r2, we denote by AZ(x; r1, r2) the closed 
metric annulus around x with inner radius r1 and outer radius r2. When the metric space 
under consideration is clear, we simply write A(x; r1, r2). Similarly, BZ(x, r) or B(x, r)
is the closed r–ball around x.

We are ready to state the main result of Section 2:

Proposition 2.1. Given the setup above, there exist a function g : R+ → R+ and a con-
stant K ≥ 1 such that the following statements hold for every δ > 0. Let c ∈ C i(S) be a 
reduced discrete cycle with fine(c) ≤ g(δ).

(0) If i ≤ k, then c = ∂d for a δ–fine discrete chain d ⊆ S with diam(d) ≤ K
√

diam(c).
(1) If i < k and c ⊆ A(p; r1, r2) for a parabolic point p ∈ S and radii δ ≤ r1 < r2 ≤

rp/K, then c = ∂d for a δ–fine discrete chain d ⊆ S with diam(d) ≤ K
√

diam(c)
and d ⊆ A(p; r1/K, Kr2).

(2) If i ≤ k and c ⊆ B(p, r2) for a parabolic point p ∈ S and a radius 0 < r2 ≤ rp/K, 
then c = ∂d for a δ–fine discrete chain d ⊆ S with diam(d) ≤ K

√
diam(c) and 

d ⊆ B(p, Kr2).

We note that, if we are only interested in fundamental groups of finite-volume real 
hyperbolic manifolds, then we can use Hn instead of the cusped space X . In this case, 
the boundary is isometric to a round sphere and the proposition is almost immediate.

In particular, the reader only interested in the proof of Theorem A can safely skip the 
rest of Section 2, which is more technical than the rest of the paper.

2.3. Geometry of nilpotent groups

The following lemma can be easily deduced from a result of Karidi on balls in nilpotent 
Lie groups [17]. Roughly speaking it says that, in an n–dimensional, connected, nilpotent 
Lie group, discrete i–cycles can be filled within annuli by chains of roughly the same 
fineness for i < n −1, while (n −1)–cycles can be “discretely homotoped” far away, again 
with the same fineness.

Lemma 2.2. Let N be an n–dimensional, connected, nilpotent Lie group, equipped with a 
left-invariant Riemannian metric. There exists L ≥ 1 such that the following holds for 
all r2 > r1 ≥ L, all x ∈ N and all discrete cycles c ∈ C i(AN (x; r1, r2)).

(1) If 0 ≤ i < n − 1 and fine(c) ≤ r1/L, then c = ∂d for some discrete chain d ⊆
AN (x; r1/L, Lr2) with fine(d) ≤ L(fine(c) ∨ 1).
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(2) If i = n − 1 and fine(c) ≤ r1/L, then c − ∂d ⊆ AN (x; r2/L, Lr2) for some discrete 
chain d ⊆ AN (x; r1/L, Lr2) with fine(d) ≤ L(fine(c) ∨ 1).

Proof. For simplicity, we write B(r) := BN (1, r) and A(r1, r2) := AN (1; r1, r2), where 
1 ∈ N is the identity. By the main result of [17], there exist a constant a > 1 and a 
collection of topological n–discs 1 ∈ B(r) ⊆ N such that, for every r > 1, we have 
B(r/a) ⊆ B(r) ⊆ B(ar). In addition, the sets A(r1, r2) := B(r2) − B(r1) are homeo-
morphic to Sn−1 × (0, 1].

First of all, observe that for every (reduced) singular cycle ĉ ⊆ N , we have ĉ = ∂d̂ for 
a singular chain d̂ with diam(d̂) ≤ 2a2 · (diam(ĉ) ∨ 2). Indeed, setting D := diam(ĉ) ∨ 2, 
we have ĉ ⊆ B(D) ⊆ B(aD) up to left multiplication. Since B(aD) is a topological disc, 
there exists a singular chain d̂ ⊆ B(aD) with ∂d̂ = ĉ. Finally, since B(aD) ⊆ B(a2D), 
we have diam(d̂) ≤ 2a2D.

Consider now a discrete chain c. We want to argue that there exists a singular chain 
ĉ with disc(ĉ) = c and fineness controlled in terms of the fineness of c. We can obtain 
this by “filling in” discrete 1–simplices with singular 1–simplices, at which point discrete 
2–simplices yield singular 1–cycles, and we can fill in those as well, and proceed induc-
tively. It follows that, for every discrete i–chain c ⊆ N , there exists a singular i–chain 
ĉ ⊆ N with c = disc(ĉ) and

fine(ĉ) ≤ 1
2(2a)2i · (fine(c) ∨ 2).

Now, consider a discrete cycle c ∈ C i(AN (x; r1, r2)) with fine(c) ∨ 2 ≤ (2a)−2ir1 and 
i ≥ 0. Up to left multiplication, we can assume that c ⊆ A(r1, r2). By the previous 
paragraph, we have c = disc(ĉ) for a (reduced) singular cycle ĉ with fine(ĉ) ≤ r1/2. In 
particular, we have

ĉ ⊆ A(r1/2, 2r2) ⊆ A(r1/2a, 2ar2) := A.

Note that A ⊆ A(r1/2a2, 2a2r2).
Recall that A is homeomorphic to Sn−1 × (0, 1]. Thus, if i �= n − 1, there exists a 

singular chain d̂ ⊆ A with ĉ = ∂d̂. If i = n − 1, there exists nevertheless d̂ ⊆ A with 
∂d̂ = ĉ− ĉ′ where ĉ′ ⊆ A(r2/2a, 2ar2) is a singular chain homologous to ĉ, which we can 
and will arrange to be finer than ĉ (e.g. by barycentric subdivision). Note that ĉ′ exists 
since A(r2/2a, 2ar2) is a deformation retract of A.

Finally, since fine(∂d̂) = fine(ĉ) ≤ 1
2 (2a)2i(fine(c) ∨ 2), Lemma 1.16 yields a discrete 

chain d ⊆ A with ∂d = disc(∂d̂) and fine(d) ≤ (2a)2i(fine(c) ∨ 2). For i �= n − 1, we have 
∂d = c and, for i = n − 1, we have c − ∂d = disc(ĉ′) ⊆ A(r2/2a, 2ar2), as required. �
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2.4. Preliminary lemmas

In the rest of Section 2, we consider the setup described in Subsection 2.2. Also 
recall that C ∗(S) denotes the chain complex of reduced discrete chains in the Bowditch 
boundary S, where 0–chains are required to have zero coefficient sum.

The following lemma says that we can fill discrete cycles while staying away from a 
specified point in the boundary, and that each point has neighbourhoods where cycles 
can be filled.

For short, we write f = o(1) for a function f : R+ → R+ with limt→0 f(t) = 0.

Lemma 2.3. There exist functions f, h = o(1) such that the following statements hold for 
every point ξ ∈ S and every δ, ε > 0.

(1) If c ∈ C ∗(S) is a discrete δ–fine cycle with ρ(ξ, c) > ε, then there exists a discrete 
chain d ⊆ S with ∂d = c and fine(d) ≤ f(δ) and ρ(ξ, d) > h(ε).

(2) There exists an open subset ξ ∈ W ⊆ S such that diam(W ) ≤ ε and such that, for 
every discrete δ–fine cycle c ∈ C ∗(W ), there exists a discrete chain d ⊆ W with 
∂d = c and fine(d) ≤ f(δ).

The reason why, in the above statement, we introduce δ and conclude that fine(d) ≤
f(δ), rather than simply writing fine(d) ≤ f(fine(c)), is to deal with 0–cycles. These are 
0–fine but cannot be filled with a 0–fine 1–chain.

Proof. The lemma follows from the fact that S is homeomorphic to a sphere, and the 
fact that the statement holds for a sphere with its round metric. More precisely, let us 
consider two metrics on S, namely ρ and a metric that makes it isometric to a round 
sphere.

For item (2) we can take W to be a ball in the round metric. In said ball, any 
c ∈ C ∗(W ) can be filled by a chain with the same fineness (with respect to the round 
metric). Comparing ρ to the round metric, using the fact that they induce the same 
topology on S, yields item (2).

Item (1) is similar, with the small difference that, in the complement of a ball in the 
round metric, any c ∈ C ∗(W ) can be filled by a chain whose fineness is at most a fixed 
multiple of fine(c). �

For each parabolic point p ∈ S = ∂X , we can define two maps projecting the Bowditch 
boundary to the horosphere around p and vice versa:

Ψp : S − {p} → Kp, Φp : Kp → S − {p}.

More precisely, we define these maps as follows. For every ξ ∈ S − {p}, the point Ψp(ξ)
is within distance 1 of a bi-infinite geodesic from p to ξ. This would not be strictly 
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Fig. 1. A point in the boundary and its “projection” to the horosphere corresponding to the parabolic point 
p, as in the proof of item (1) of Lemma 2.4.

necessary, but for convenience, we will require Ψp to be injective. This can always be 
arranged, since we allow Ψp to take values outside the vertex set of Kp and any set 
of cardinality 2ℵ0 (a suitable neighbourhood of ξ in S) can be injected into any set of 
the same cardinality (a suitable neighbourhood of a point in Kp). Conversely, for every 
x ∈ Kp, the point Φp(x) is the endpoint at infinity of a bi-infinite geodesic from p that 
passes within distance 1 of x. Again for convenience, we will require that ΦpΨp(ξ) = ξ

for all ξ ∈ S − {p}.
The next three lemmas are general facts about cusped spaces, which do not require 

the Bowditch boundary to be a sphere, nor the peripherals to be virtually nilpotent. 
They are similar to [19, Lemma 5.6] and [20, Lemma 6.1], and can be proven with the 
same method. Namely, one can use that finite configurations of points in a hyperbolic 
space can be approximated by trees, and compute all relevant Gromov products in said 
trees (see [19, Figures 1 and 2]). We give more details below only for the first lemma.

We denote by dKp
(·, ·) the intrinsic path metric of a horosphere Kp.

Lemma 2.4. There exists a constant C ≥ 1, depending only on δ0, ε0, such that the 
following statements hold for all x, y ∈ S − {p}:

(1) dKp
(ep, Ψp(x)) ∼C 1 ∨

(
rp

ρ(p,x)

)1/ε0
;

(2) if ρ(x, y) ≤ ρ(p, {x, y}), then dKp
(Ψp(x), Ψp(y)) ∼C 1 ∨

(
rp·ρ(x,y)
ρ(p,x)2

)1/ε0
.

Proof sketch. The outline for item (1) is as follows, in the case that Ψp(x) is sufficiently 
far from ep. Fig. 1 shows an approximating tree for the relevant points. The two high-
lighted segments have the same length � because their endpoints lie on a horosphere. We 
have that (p|x)o is equal to d(o, ep) + � up to bounded additive error, and we also have 
that dKp

(ep, Ψp(x)) ∼D e� for some D depending only on the cusped space X . Recalling 
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Fig. 2. Illustration of the proof idea of item (2) of Lemma 2.4.

the definition of the visual metric, we have that ρ(p, x) ∼D′ rpe
−ε0� for some D′. Hence, 

(rp/ρ(p, x))1/ε0 ∼D′′ e� for some D′′ and, as mentioned above, the right-hand side is 
∼D dKp

(ep, Ψp(x)), as required.
In item (2), in principle there would be two approximating trees to consider, up to 

swapping x and y. These are pictured in Fig. 2. However, in the right-hand configuration, 
(p|x)o − (x|y)o is approximately t as marked in the Fig. 2. Thus, if t is large we have 
ρ(x, y) � ρ(p, x, y), while for small t the right-hand configuration collapses into the 
left-hand one. Estimates analogous to those used for item (1) conclude the proof. �
Lemma 2.5. There exists a constant C ≥ 1, depending only on δ0, ε0, such that the 
following statements hold for all points u, v ∈ Kp outside the C–ball around ep:

(1) ρ(p, Φp(u)) ∼C
rp

dKp (ep,u)ε0 ;

(2) if dKp
(u, v) ≤ 1

2 · dKp
(ep, u), then ρ(Φp(u), Φp(v)) ≤ C ·

rp·
(
1∨dKp (u,v)

)ε0

dKp (ep,u)2ε0 .

For a discrete chain c ⊆ S, we define the barycentre b(c) ∈ X ∪ S as follows: choose a 
vertex ξ ∈ c and let b(c) ∈ [o, ξ] be the point with dX (o, b(c)) = infη,η′∈c(η|η′)o. Observe 
that diam(c) ∼C e−ε0dX (o,b(c)), for a constant C only depending on δ0, ε0.

Lemma 2.6. For every K ≥ 1, there exists D ≥ 0 such that the following holds for all 
parabolic points p ∈ S, all points ξ ∈ B(p, rp) ⊆ S and all points z ∈ [0, ξ].

(1) If 1
K · ρ(p,ξ)2

rp
≤ e−ε0dX (o,z) ≤ rp, then dX (z, Hp) ≤ D.

(2) If e−ε0dX (o,z) ≤ K · ρ(p,ξ)2
rp

, then dX (z, X −Hp) ≤ D.

In addition, there exists K0, depending only on δ0, ε0, with the following property.
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(3) If z ∈ Hp, then 1
K0

· ρ(p,ξ)2
rp

≤ e−ε0dX (o,z).

Finally, the next lemma is a consequence of Lemma 2.2 and we provide a complete 
proof.

Lemma 2.7. There exists a constant L ≥ 1 such that the following holds for every horo-
sphere K = Kp ⊆ X with p ∈ S a parabolic point, all r2 > r1 ≥ L and all discrete cycles 
c ∈ C i(AK(ep; r1, r2)).

(1) If i < k and fine(c) ≤ r1/L, then c = ∂d for some discrete chain d ⊆
AK(ep; r1/L, Lr2) with fine(d) ≤ L(1 ∨ fine(c)).

(2) If i = k and fine(c) ≤ r1/L, then c −∂d ⊆ AK(ep; r2/L, Lr2) for some discrete chain 
d ⊆ AK(ep; r1/L, Lr2) with fine(d) ≤ L(1 ∨ fine(c)).

Proof. Since there are only finitely many G–orbits of horospheres in X , and peripherals 
are virtually nilpotent, it suffices to prove the statement in every finitely generated 
nilpotent group N (equipped with a word metric). Passing to a finite-index subgroup, we 
can assume that N is torsion-free; see e.g. [1, Theorem 2.1]. Set n :=

∑
rk(N (i)/N (i+1)).

The group N is a uniform lattice in its Mal’cev completion N , which is an 
n–dimensional, connected, nilpotent Lie group; see e.g. [13, Theorem 13.40].

Observe that n = k+1. Indeed, N acts freely and cocompactly both on N and S−{∗}
(since the parabolic point corresponding to N is a bounded parabolic point, see e.g. [5, 
Section 6]). These spaces are homeomorphic, respectively, to Rn and Rk+1, hence the 
cohomological dimension of N equals both n and k + 1.

Now, since the inclusion N ↪→ N is a quasi-isometry, the statement follows from 
Lemma 2.2. �
2.5. The main argument

In order to simplify notation throughout this subsection, we will write a ∼ b, for two 
quantities a, b > 0, when there exists a constant C ≥ 1, depending only on δ0, ε0, such 
that a ∼C b. Similarly, we write a � b when a ≤ Cb for such a constant C.

For a constant D ≥ 0, we say that a point x ∈ X is D–deep in a horoball Hp if x ∈ Hp

and dX (x, Kp) ≥ D. Recall that C ∗(S) denotes reduced discrete chains in S; this means 
that 0–chains are required to have zero coefficient sum.

We now embark in the proof of Proposition 2.1. The following result gives us some 
initial control on fineness and diameter of fillings.

Lemma 2.8. For every D ≥ 0, there exist a function f = o(1) and a constant K ≥ 1 with 
the following property. Let c ∈ C ∗(S) be a discrete cycle such that some point z ∈ [o, b(c)]
is not D–deep in any horoball. If c is δ–fine for some δ > 0, then c = ∂d for a discrete 
chain d ⊆ S with fine(d) ≤ f(eε0dX (o,z) · δ) and diam(d) ≤ Ke−ε0dX (o,z).
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Fig. 3. The points relevant for case (1) in the proof of Lemma 2.8.

Proof. Throughout the proof, balls and diameters will usually refer to the metric ρ = ρo; 
in case of ambiguity, we will indicate the relevant metric as a subscript.

The reason for introducing δ in the statement is the same as for Lemma 2.3. In the 
argument below, we will instead use fine(c) with a slight abuse, even though for 0–cycles 
we should use some δ > 0 instead.

We distinguish two cases in the proof.

Case (1): the geodesic [o, z] goes at least (D +K ′ + 10δ0)–deep into a horoball Hp, for a 
constant K ′ only depending on D to be determined below.

Consider the metrics ρ := ρo and ρ′ := ρz. Since [0, z] ⊆ [0, b(c)] goes (D+10δ0)–deep 
into Hp, while z is not D–deep in Hp, all geodesic lines from p to the vertices of c intersect 
the 10δ0–neighbourhood of z. Hence ρ′(p, c) is bounded away from zero purely in terms 
of δ0, ε0, see Fig. 3.

Since z is not D–deep in any horoball, there exists g ∈ G such that the metrics ρ′ and 
ρgo are K–bi-Lipschitz equivalent, for a constant K only depending on D. In addition, 
g gives an isometry between (S, ρo) and (S, ρgo), and Lemma 2.3(1) holds in the former 
space. We conclude that there exists d ⊆ S with ∂d = c and

fineρ′(d) ≤ fD(fineρ′(c)), ρ′(p, d) ≥ ηD,

for a function fD = o(1) and a constant ηD > 0 depending on D. In particular, we have 
supξ∈d(ξ|p)z ≤ K ′, for a constant K ′ only depending on D and δ0.

Let x, y ∈ [o, z] be the points with dX (o, x) = (p|z)o and dX (y, z) = supξ∈d(ξ|p)z. 
Assuming now that [o, z] goes at least (D+K ′ +10δ0)–deep into Hp, we have dX (o, y) ≥
dX (o, x) + 10δ0. Thus, all rays from o to the vertices of d track the geodesic [o, z] at 
least up to y, hence infξ,ξ′∈d(ξ|ξ′)o ≥ dX (o, y) − 10δ0 and diamρ(d) � e−ε0dX (o,y) ≤
eε0K

′
e−ε0dX (o,z), as required.



26 E. Fioravanti et al. / Advances in Mathematics 443 (2024) 109601
We are left to control the fineness of d. Let E(d) be the set of pairs (ξ, ξ′) ∈ S2

corresponding to the edges of d. Recall that fineρ′(d) ≤ fD(fineρ′(c)). In addition, ρ and 
ρ′ are eε0dX (o,z)–bi-Lipschitz equivalent. It follows that, for some constant C depending 
only on δ0, ε0, we have:

inf
(ξ,ξ′)∈E(d)

(ξ|ξ′)z ≥ − log fD(fineρ′(c))
ε0

− C ≥ − log fD(eε0dX (o,z) fineρ(c))
ε0

− C.

Suppose for a moment that, for some t ≥ 1, the right-hand side is at least K ′+(log t)/ε0. 
Then, recalling that K ′ ≥ supξ∈d(ξ|p)z = dX (y, z), we obtain:

inf
(ξ,ξ′)∈E(d)

(ξ|ξ′)o ≥ dX (o, y) + (log t)/ε0 − 10δ0.

We then have fineρ(d) � e−ε0dX (o,y)/t � 1/t. In conclusion, if eε0dX (o,z) fineρ(c) is smaller 
than a certain constant depending on D and t, then fineρ(d) ≤ 1/t.

This settles case (1).
Case (2): the geodesic [o, z] does not go (D + K ′ + 10δ0)–deep into any horoball.

In this case we will use a form of (partial) self-similarity of the boundary made precise 
in [19, Lemma 4.6].

Let D′ ≥ 0 be a constant such that the geodesic [o, z] is contained in the D′–neigh-
bourhood of the orbit Go ⊆ X . Let L0 = L0(D′) be the constant provided by [19, 
Lemma 4.6]. Let f be the function provided by Lemma 2.3, and choose an open cover W
of S by the sets provided by Lemma 2.3(2) with ε = 1/L0. Let α be a Lebesgue number 
for W .

Let y ∈ [o, z] be the point with dX (y, z) = D′′, where D′′ is a sufficiently large constant 
to be determined below. (If dX (o, z) < D′′, we can directly apply Lemma 2.3(1) because, 
in this case, the condition on the diameter is vacuous if K is large enough.) Choose an 
element g ∈ G with dX (g−1o, y) ≤ D′. Choose a vertex ξ ∈ c.

By [19, Lemma 4.6], g induces an L0–bi-Lipschitz map from the rescaled ball 
(B(ξ, r), ρo/r) to an open subset U ⊆ S containing B(gξ, 1/L0), for some radius 
r ∼ e−ε0dX (o,y). Recall that diam(c) ∼ e−ε0dX (o,b(c)) ≤ e−ε0D

′′
e−ε0dX (o,y). Thus, if D′′ is 

sufficiently large, we have diam(c) ≤ r, hence c ⊆ B(ξ, r) and:

diam(gc) ≤ L0 diam(c)/r � L0e
−ε0dX (y,b(c)) ≤ L0e

−ε0D
′′
.

Now, if D′′ is sufficiently large (depending only on D′, δ0, ε0), we also have diam(gc) ≤
α. Since α is a Lebesgue number for W , the cycle gc is then contained in some W ∈ W . 
Since diam(W ) ≤ 1/L0 and gξ ∈ gc ⊆ W , we have W ⊆ B(gξ, 1/L0) ⊆ U . In addition, 
by our choice of W , there exists a discrete chain d′ ⊆ W with ∂d′ = gc and fine(d′) ≤
f(fine(gc)).

In conclusion, setting d := g−1d′, we have c = ∂d and:

diam(d) ≤ rL0 diam(d′) ≤ rL0 diam(S) � L0e
−ε0dX (o,y) = L0e

ε0D
′′
e−ε0dX (o,z),
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fine(d) ≤ rL0 fine(d′) ≤ rL0f(fine(gc)) � L0f(L0 fine(c)/r),

where r ∼ eε0D
′′
e−ε0dX (o,z). Since L0 and D′′ only depend on D′ (and δ0, ε0), they only 

depend on D. This settles case (2), proving the lemma. �
As a consequence of the previous lemma, we can already fill discrete cycles c in the 

Bowditch boundary with good fineness and diameter control, provided that the barycen-
tre b(c) is not deep in any horoball. This is the content of the following corollary.

Corollary 2.9. For every D ≥ 0, there exist a function g : R+ → R+ and K ≥ 1 such 
that the following hold for all δ > 0 and all discrete cycles c ∈ C ∗(S) with fine(c) ≤ g(δ).

(1) If some point z ∈ [o, b(c)] is not D–deep in any horoball, then c = ∂d for a discrete 
chain d ⊆ S with fine(d) ≤ δ and diam(d) ≤ Ke−ε0dX (o,z).

(2) If b(c) is not D–deep in any horoball, then c = ∂d for a discrete chain d ⊆ S with 
fine(d) ≤ δ and diam(d) ≤ K diam(c).

Proof. As in the previous proof, we will use fine(c) with a slight abuse, rather than 
introducing a positive fineness constant.

Observe that part (2) follows from part (1) simply taking z = b(c) and recalling 
that diam(c) ∼ e−ε0dX (o,b(c)). (This is assuming that b(c) ∈ X . If instead b(c) ∈ S, the 
support of c is a single point, and we can take d supported on the same point.) We now 
prove part (1).

Let f be as in Lemma 2.8. Define g(δ) := δ · τ , for any τ > 0 such that f(τ ′) ≤ δ

for all τ ′ ≤ τ . By the lemma, we have c = ∂d for a discrete chain with diam(d) ≤
Ke−ε0dX (o,z) and fine(d) ≤ f(eε0dX (o,z) fine(c)). If eε0dX (o,z) fine(c) ≤ τ , we have fine(d) ≤
δ as required.

Otherwise e−ε0dX (o,z) ≤ fine(c)/τ ≤ δ (since fine(c) ≤ g(δ) by assumption), so we can 
just define d′ as the cone over c from any of its vertices (Definition 1.2). Then ∂d′ = c

and fine(d′) = diam(d′) = diam(c), where diam(c) ∼ e−ε0dX (o,b(c)) ≤ e−ε0dX (o,z) ≤ δ. �
Just like Proposition 2.1, the next two lemmas roughly say that discrete cycles in 

annuli around parabolic points can be filled in slightly larger annuli. However, these 
two lemmas require an additional technical condition (cycle barycentres should lie in 
horoballs) that we can only drop later on by a bootstrapping argument.

Recall that the face complex F∗(d) of a discrete chain d was introduced in Defini-
tion 1.4.

Lemma 2.10. There exists a constant K ≥ 1 such that the following holds for every 
parabolic point p ∈ S and all 0 < r1 < r2 ≤ rp/K.

If c is a discrete cycle in C i(A(p; r1, r2)) with b(c) ∈ Hp and fine(c) ≤ r2
1/rp, then 

there exists a discrete chain d ⊆ A(p; r1/K, Kr2) with diam(d) ≤ K
√

diam(c) and the 
following properties.
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(∗) For every simplex σ ∈ F∗(d), we have diam(σ) ≤ K · ρ(p,σ)2
rp

.
(∗∗) If i < k, we have ∂d = c. If i = k, we have c − ∂d ⊆ B(p, Kr1).

Proof. Choose a vertex ξ ∈ c maximising the distance ρ(p, ξ). Without loss of generality, 
we can assume that r2 = ρ(p, ξ). Since b(c) ∈ Hp, Lemma 2.6(3) implies that diam(c) �
r2
2/rp.

By Lemma 2.4(1), we have Ψp(c) ⊆ AKp
(ep; R1, R2) with R1 ∼ (rp/r2)1/ε0 and R2 ∼

(rp/r1)1/ε0 . Since fine(c) ≤ r2
1/rp by assumption, Lemma 2.4(2) also yields fine(Ψp(c)) �

1.
In view of Lemma 2.7 and the previous paragraph, there exists a constant L

such that the following holds. Provided that r2 ≤ rp/L, there exists a chain D ⊆
AKp

(ep; R1/L, LR2) such that fine(D) ≤ L and:

• if i < k, then ∂D = Ψp(c);
• if i = k, then Ψp(c) − ∂D is disjoint from BKp

(ep, R2/L).

Now, set d := Φp(D). Lemma 2.5 guarantees that there exists a constant K depending 
on L, δ0, ε0 such that, if r2 ≤ rp/K, the following holds: d ⊆ AS(p; r1/K, Kr2) and, for 
every simplex σ ⊆ d, we have diam(σ) ≤ K · ρ(p,σ)2

rp
. In particular, we have:

diam(d) ≤ 2Kr2 � 2K
√
rp diam(c) ≤ 2K

√
diam(c).

Finally, if i < k, we have ∂d = Φp(∂D) = ΦpΨp(c) = c. If instead i = k, we obtain 
c − ∂d ⊆ B(p, Kr1) by another application of Lemma 2.5(1). �

The fineness of the filling d provided by the previous lemma is not small enough for 
our purposes. The next result will solve this problem with a refining procedure.

Lemma 2.11. There exist g and K ≥ 1 such that the following holds for all parabolic 
points p ∈ S and all δ > 0.

Let c ∈ C i(S) be a cycle with fine(c) ≤ g(δ) and b(c) ∈ Hp. Then:

(1) if i < k and c ⊆ A(p; r1, r2) for radii δ ≤ r1 < r2 ≤ rp/K, we have c = ∂d for some 
d ⊆ A(p; r1/K, Kr2) with fine(d) ≤ δ and diam(d) ≤ K

√
diam(c);

(2) if i ≤ k and c ⊆ B(p, r2) for a radius 0 < r2 ≤ rp/K, we have c = ∂d for some 
d ⊆ B(p, Kr2) with fine(d) ≤ δ and diam(d) ≤ K

√
diam(c).

Proof. We prove in detail only part (1), since the argument for part (2) is identical.
Part (1). Assume that c ⊆ A(p; r1, r2) and i < k.
Ensuring that g(δ) ≤ δ2, we have fine(c) ≤ δ2 ≤ r2

1 ≤ r2
1/rp. Thus, Lemma 2.10 gives 

c = ∂d for some d ⊆ A(p; r1/K, Kr2) with diam(d) ≤ K
√

diam(c). In addition, for every 

simplex σ ∈ F∗(d), we have diam(σ) ≤ K · ρ(p,σ)2 .
rp



E. Fioravanti et al. / Advances in Mathematics 443 (2024) 109601 29
Our only task is now to replace d by a δ–fine chain with the same properties. We will 
achieve this by constructing a chain map R∗ : F∗(d) → C∗(S) such that:

• R∗(σ) = σ for every η0–fine simplex σ ∈ F∗(d) (in particular, R0 = id);
• for every simplex σ ∈ Fj(d) with j ≥ 1, we have fine(Rj(σ)) ≤ ηj and diam(Rj(σ) ∪

σ) ≤ Mj · ρ(p,σ)2
rp

.

The constants ηj and Mj are defined inductively as follows. Set M0 := K and ηk := δ. 
For each j ≥ 0, let Dj be the constant provided by Lemma 2.6 in relation to the constant 
25Mj . We then let Kj+1 and gj be the constant and function provided by Corollary 2.9
applied to the constant Dj . Finally, we set ηj := gj(ηj+1) and Mj+1 := 35Kj+1Mj +K.

We now construct the chain map R∗. We proceed by induction on j, setting R0 = id. 
For the inductive step, suppose that the degree–j map Rj has been defined with the 
above properties and let us construct Rj+1.

Without loss of generality, assume that r2 ≤ rp/2Mj . This implies that, for every 
simplex τ ∈ Fj(d), we have diam(Rj(τ) ∪ τ) ≤ Mjr2

rp
· ρ(p, τ) ≤ 1

2ρ(p, τ). In particular, 
this guarantees that ρ(p, Rj(τ)) ≥ 1

2ρ(p, τ). Similarly, assuming that r2 ≤ rp/2K, we 
have diam(σ) ≤ 1

2ρ(p, σ) for every simplex σ ∈ F∗(d).
As a consequence, for each simplex σ ∈ Fj+1(d) we have:

diam(Rj(∂σ)) ≤ 2Mj · max
τ⊆∂σ

ρ(p,τ)2
rp

≤ 23Mj · ρ(p,∂σ)2
rp

≤ 25Mj · ρ(p,Rj(∂σ))2
rp

,

ρ(p,Rj(∂σ)) = min
τ⊆∂σ

ρ(p,Rj(τ)) ≤ min
τ⊆∂σ

3
2ρ(p, τ) ≤ 9

4ρ(p, σ).

Now, for a simplex σ ∈ Fj+1(d), we need to define Rj+1(σ) so that ∂Rj+1(σ) =
Rj(∂σ). If σ is η0–fine, then so is ∂σ, hence Rj(∂σ) = ∂σ and we set Rj+1(σ) := σ.

Suppose instead that σ is not η0–fine. By the inductive hypothesis, we have 
fine(Rj(∂σ)) ≤ ηj = gj(ηj+1). In addition, by the above inequalities, there exists a point 
z ∈ [o, b(Rj(∂σ))] with e−ε0dX (o,z) = 25Mj · ρ(p,Rj(∂σ))2

rp
. By Lemma 2.6 and our choice 

of Dj , we then have dX (z, Kp) ≤ Dj . In particular, z is not Dj–deep in any horoball, 
so Corollary 2.9(1) implies that Rj(∂σ) = ∂σ′ for a discrete (j + 1)–chain σ′ ⊆ S with 
fine(σ′) ≤ ηj+1 and diam(σ′) ≤ Kj+1e

−ε0dX (o,z). It follows that:

diam(σ ∪ σ′) ≤ K · ρ(p,σ)2
rp

+ 25Kj+1Mj · ρ(p,Rj(∂σ))2
rp

≤ (K + 35Kj+1Mj) · ρ(p,σ)2
rp

.

Thus, we can set Rj+1(σ) := σ′.
This completes the construction of R∗. We now bound the diameter of Ri+1(d) and 

show that this chain is contained in a suitable annulus around p.
Recall that d ⊆ A(p; r1/K, Kr2) and that, for every simplex σ ∈ Fi+1(d), we have 

diam(Ri+1(σ) ∪ σ) ≤ 1
2ρ(p, σ) and ρ(p, Ri+1(σ)) ≥ 1

2ρ(p, σ). This immediately implies 
that Ri+1(d) ⊆ A(p; r1/2K, 2Kr2).
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Without loss of generality, assume that r2 = maxξ∈c ρ(p, ξ). Since b(c) ∈ Hp, 
Lemma 2.6(3) guarantees that diam(c) � r2

2/rp. Set M := maxj≤k Mj . For every simplex 
σ ∈ F∗(d), we have:

diam(R∗(σ) ∪ σ) ≤ M · ρ(p,σ)2
rp

≤ MK2 · r2
2

rp
� MK2 diam(c) � MK2

√
diam(c).

Since diam(d) ≤ K
√

diam(c), we obtain diam(Ri+1(d)) � (MK2 + K)
√

diam(c).
Finally, define g(δ) = δ2 ∧ η0, recalling that η0 = g0g1 . . . gk−1(δ). Also note that 

c ∈ F∗(d) since c = ∂d. Thus, if c is g(δ)–fine, we have Ri(c) = c and, in particular, 
c = ∂Ri+1(d). As shown above, Ri+1(d) is δ–fine, it is contained in a suitable annulus 
around p and it admits the required diameter bound. This proves part (1).

Part (2). Assume that c ⊆ B(p, r2) and i ≤ k. Set r1 := δ.
Exactly as in part (1), the combination of Lemma 2.10 and the construction of a 

refining chain map R∗ (this time defined on the chain complex F∗(d) ⊕ F∗(c)) yields 
a discrete chain d′ and a constant K ′ ≥ 1 such that fine(d′) ≤ δ and diam(d′) ≤
K ′√diam(c) and c − ∂d′ ⊆ B(p, K ′δ). If r2 ≤ δ, we simply take d′ = 0.

Now, define d′′ as the cone over c −∂d′ from p (Definition 1.2). We have ∂d′′ = c −∂d′

and d′′ ⊆ B(p, K ′δ), hence fine(d′′) ≤ diam(d′′) ≤ 2K ′δ.
In conclusion, setting d := d′ + d′′ ⊆ B(p, K ′r2), we have ∂d = c and fine(d) ≤ 2K ′δ. 

In addition, note that we can assume that diam(c) ≥ δ2 (otherwise, we could have just 
taken d to be instead the cone over c from any of its vertices, since δ2 ≤ δ). Thus, we 
have diam(d) ≤ 2K ′δ + K ′√diam(c) ≤ 3K ′√diam(c).

This proves part (2). �
Finally, we can use Corollary 2.9 to remove from Lemma 2.11 the requirement that 

b(c) ∈ Hp. That is, we can prove Proposition 2.1.

Proof of Proposition 2.1. Let g1, K1 be the function and constant provided by Lem-
ma 2.11. Choose D ≥ 0 such that, if b(c) is D–deep in some horoball Hq, then c ⊆
B(q, rq/K1). Now, let g2, K2 be the function and constant provided by Corollary 2.9 in 
relation to the constant D. Finally, set g := g1 ∧ g2 and K ′ := K1 ∨K2.

Suppose that c ∈ C i(S) is g(δ)–fine and i ≤ k. If b(c) is not D–deep in any horoball, 
then c = ∂d with fine(d) ≤ δ and diam(d) ≤ K ′ diam(c), by Corollary 2.9. If b(c) is 
D–deep in a horoball Hq, then c = ∂d with fine(d) ≤ δ and diam(d) ≤ 2rq∧K ′√diam(c), 
by Lemma 2.11(2).

This proves part (0). Regarding parts (1) and (2), we are left to show that the filling 
d constructed in the previous paragraph lies in the required annulus/ball around the 
parabolic point p. For this, we can assume that b(c) �∈ Hp, otherwise a suitable filling of 
c is provided by Lemma 2.11.

Since b(c) �∈ Hp, there exists a constant C, depending only on δ0, ε0, such that 
diam(c) ≤ Cρ(p, c)2/rp. In addition, if b(c) ∈ Hq for some parabolic point q ∈ S, 



E. Fioravanti et al. / Advances in Mathematics 443 (2024) 109601 31
then we similarly have rq ≤ Cρ(p, c)2/rp. Note that ρ(p, c) ≤ r2 in part (2), while we 
can assume without loss of generality that ρ(p, c) = r1 in part (1).

Now, recall that the filling d satisfies diam(d) ≤ 2rq if b(c) is deep in a horoball 
Hq, and diam(d) ≤ K ′ diam(c) otherwise. Thus, provided that r2 ≤ rp

2K′C ∧ rp
4C , we 

have diam(d) ≤ r2/2 in part (2), and diam(d) ≤ r1/2 in part (1). This implies that 
d is contained in the ball B(p, 2r2) in part (2), and in the annulus A(p; r1/2, 2r2) in 
part (1). �
3. Filling discrete cycles in the Morse boundary

This section has two main goals, namely Proposition 3.6 and Proposition 3.8, which 
both hold for relatively hyperbolic groups with sphere boundary (see below for the precise 
assumptions). Proposition 3.6 roughly says that sufficiently low-dimensional cycles in a 
given stratum of the Morse boundary can be filled in a controlled stratum and with 
controlled fineness and diameter. While Proposition 3.6 will be used for our vanishing 
results for Čech cohomology, Proposition 3.8 will be used for our non-vanishing results. 
This proposition says that, for a given finite collection of parabolic points F in the 
Bowditch boundary S, we can represent the entire homology of S − F by cycles of 
arbitrarily small fineness that are contained in some fixed stratum of the Morse boundary.

3.1. Notation

If B is a metric ball in a metric space, we denote by r(B) its radius, and by λB the 
ball with the same centre as B and r(λB) = λr(B). If B is a family of metric balls, 
we write λB = {λB | B ∈ B}, and denote by rmax(B) and rmin(B), respectively, the 
supremum and the infimum of radii of balls in B.

Recall that we use the notation a ∨ b := max{a, b} and a ∧ b := min{a, b}.

3.2. Assumptions

Let (G, P) be a relatively hyperbolic pair where G is finitely generated and P consists 
of finitely many finitely generated subgroups. Throughout most of Section 3, we will 
further assume as in Section 2 that the elements of P are virtually nilpotent and that 
the Bowditch boundary S is homeomorphic to a sphere Sk+1 for some k ≥ 1. The only 
exceptions will be Proposition 3.1 and Theorem 3.2, which we state under more general 
hypotheses.

Choose a visual metric ρ on S. Let g and K be the corresponding function and constant 
provided by Proposition 2.1. Without loss of generality, we can assume that g(δ) ≤ δ for 
all δ > 0. To simplify the proof of Lemma 3.5 below, we also assume that K ≥ 9.

Each parabolic point p ∈ S comes with a characteristic radius rp, as defined in Sub-
section 2.2. We fix a constant M ≥ 2K2 and consider the following collection of balls in 
S:
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B := {B(p, rp/M) | p ∈ S parabolic}.

Up to enlarging M , we can and will assume (see e.g. [19, Lemma 3.2]) that, whenever 
two balls B, B′ ∈ B with r(B) ≤ r(B′) have nonempty intersection, we have:

r(B) ≤ 1
K4 · r(B′). (∗)

For every n ≥ 1, we define the sets:

Xn := S −
⋃

B∈B

1
nB.

We endow each Xn with the subspace topology induced by S.
Under weak assumptions on the peripherals, the Morse boundary of a relatively hyper-

bolic group can be described as the direct limit of the strata Xn (we do not yet assume 
that the Bowditch boundary is a sphere or that the peripherals are virtually nilpotent).

Proposition 3.1. Let (G, P) be a relatively hyperbolic pair where G is finitely generated 
and P consists of finitely many finitely generated groups with empty Morse boundary. 
Then the Morse boundary ∂∗G is homeomorphic to lim−−→Xn.

Proof. This is proven for fundamental groups of finite volume hyperbolic manifolds in [7, 
Proposition 6.4], but the argument works more generally replacing H3 with the cusped 
space for G, up to minor modifications that we now discuss. All references below are 
from [7].

Lemma 6.1 uses CAT(0)-ness of the neutered space under consideration, but only to 
deduce that Morse geodesics are strongly contracting (quantitatitvely). This still holds 
since the neutered space is relatively hyperbolic, and by [22] a geodesic in a relatively 
hyperbolic space is strongly contracting if for every C > 0 there exists B > 0 such that 
the intersections of the geodesic with the C–neighbourhoods of the peripheral subsets 
have diameter bounded by B. Lemma 6.1 also uses that horospheres are flats, but only 
to the extent that they do not contain Morse rays. In Lemma 6.2 the visual metric used 
is e−(·|·), while in general it is e−ε(·|·) for some small positive ε; this does not affect 
the argument. The proof of part (2) of the same lemma uses convexity of horoballs to 
conclude that the intersection of the ray γ under consideration and the horoball is a 
subgeodesic. In a general cusped space, this intersection lies within uniformly bounded 
Hausdorff distance of a subgeodesic, so this does not cause issues. In the same part of the 
proof, the argument involving the midpoint of a geodesic in a horoball with endpoints on 
the horosphere can be performed equally well in a combinatorial horoball rather than in 
the half-space model for H3. Finally, the argument in the proof of Proposition 6.4 again 
uses that horospheres are flats, but again to the same extent as the proof of Lemma 
6.1 �



E. Fioravanti et al. / Advances in Mathematics 443 (2024) 109601 33
As an aside, in view of the description of Morse boundaries given above, we point 
out that results of [19] yield path-connectedness (under weaker assumptions than the 
boundary being a sphere):

Theorem 3.2. Let (G, P) be a relatively hyperbolic pair where G is finitely generated and 
P consists of finitely many finitely generated, virtually nilpotent subgroups. Suppose that 
G is one-ended and does not split over a subgroup conjugate into some peripheral group. 
Then ∂∗G is path-connected.

Proof. The hypotheses of the theorem are the same as [19, Theorem 1.2], which is a 
special case of [19, Theorem 1.3]. In the proof of said theorem it is argued that [19, 
Corollary 7.4] applies, which is a result that allows one to connect pairs of points in the 
Bowditch boundary with arcs that avoid balls around parabolic points. By the description 
above, each of these arcs is contained in (a stratum of) the Morse boundary. �

The next lemma allows us to approximate each stratum Xn by the complement of a 
finite collection of balls in S.

Lemma 3.3. For every n ≥ 1 and ε > 0 there exists r = r(n, ε) > 0 such that Xn is 
ε–dense in the set:

S −
⋃{ 1

nB | B ∈ B, r(B) ≥ r
}
.

Proof. Fix n ≥ 1 and ε > 0. Consider, for m ≥ 1, the compact sets:

Km := S −
⋃{ 1

nB | B ∈ B, r(B) ≥ 1
m

}
.

Note that we have 
⋂

m≥1 Km = Xn. If there exists m such that Xn is ε–dense in Km, 
we can set r(n, ε) := 1/m. Otherwise, for each m ≥ 1 there exists a point xm ∈ Km with 
ρ(xm, Xn) ≥ ε. Passing to a subsequence, we have xm → x with both x ∈

⋂
m≥1 Km =

Xn and ρ(x, Xn) ≥ ε > 0, a contradiction. �
3.3. Detouring

Recall that, from now on, we assume that P consists of virtually nilpotent subgroups 
and the Bowditch boundary S is homeomorphic to a sphere Sk+1 with k ≥ 1.

In order to construct fillings in the Morse boundary X = lim−−→Xn, our strategy will 
be to construct fillings in the Bowditch boundary S using Proposition 2.1, and then to 
detour these around suitable collections of balls in S, thus pushing the fillings into a 
stratum of X. The final result of this type will be Proposition 3.6.

To begin with, the following lemma explains how to detour chains in S around collec-
tions of pairwise disjoint balls. Recall that g and K were introduced in Proposition 2.1.
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Fig. 4. The decomposition of the discrete chain d into parts close to parabolic points plus the rest dout.

Lemma 3.4. Consider a finite subset B ⊆ 1
NB, for some N ≥ 1. Suppose that 2KB

is pairwise disjoint. Let d ∈ Ci(S) be a g(δ)–fine discrete chain, where 1 ≤ i ≤ k and 
0 < δ ≤ rmin(B). Suppose that supp(∂d) is disjoint from all balls in B.

Then there exists a discrete chain d′ in S such that:

(1) d′ is δ–fine and ∂d′ = ∂d;
(2) supp(d′) is disjoint from all balls in 1

KB;
(3) d and d′ coincide outside the union of the balls in 2KB;
(4) diam(d′) ≤ diam(d) + 4K

√
rmax(B);

(5) if d is g(g(δ))–fine, then d − d′ = ∂e for a δ–fine discrete (i + 1)–chain e contained 
in the union of the balls in 2K2B.

Proof. We begin by noting that, for every ball B ∈ B centred at a parabolic point p ∈ S, 
we have 2Kr(B) ≤ rp/K, since we have chosen M ≥ 2K2 in the definition of B. This 
will allow us to freely apply Proposition 2.1 later in the proof.

Write d = dout +
∑

B∈B dB , where dB is obtained by grouping all simplices in a 
reduced expression for d whose support is entirely contained in 2B; this is illustrated in 
Fig. 4. Note that the balls in 2B are pairwise disjoint, since K ≥ 1.

Observe that supp(dout) is disjoint from all balls B ∈ B. Indeed, since d is g(δ)–fine 
and g(δ) ≤ δ ≤ rmin(B), every simplex σ appearing in dout has diameter at most r(B)
and intersects the complement of 2B, for each B ∈ B.

Similarly, each supp(∂dB) is contained in the annulus 2B−B. To see this, consider a 
codimension–1 face τ of a simplex σ appearing in d, and suppose that supp(τ) ∩B �= ∅. 
Then supp(σ) ⊆ 2B, since d is r(B)–fine, as observed above. It follows that all simplices 
of d containing τ appear in dB. Since supp(∂d) ∩B = ∅, the simplex τ does not appear 
in ∂d, hence it cannot appear in ∂dB either.

Now, ∂dB is a g(δ)–fine discrete, reduced (i − 1)–chain in the annulus 2B−B and we 
have i − 1 ≤ k − 1. Proposition 2.1(1) yields a δ–fine discrete i–chain d′B in the annulus 
2KB − 1

KB with ∂d′B = ∂dB and diam(d′B) ≤ K
√

diam(∂dB). If ∂dB = 0, we simply 
take d′B = 0. Define d′ := dout +

∑
B∈B d′B .
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Checking that d′ satisfies (1) and (3) is straightforward. Moreover, recall that 
supp(dout) is disjoint from all balls B ∈ B. Since supp(d′B) ⊆ 2KB − 1

KB and the 
balls in 2KB are pairwise disjoint, we see that d′ also satisfies (2).

Regarding property (4), note that every point of supp(d′B) is at distance at most 
K
√

diam(∂dB) from a point of supp(∂dB) ⊆ supp(d). Since we have both diam(∂dB) ≤
diam(d) and diam(∂dB) ≤ diam(2B) ≤ 4rmax(B), this yields the required inequality.

Finally, we prove property (5). If d is g(g(δ))–fine, Proposition 2.1(2) ensures that 
dB − d′B = ∂eB for a δ–fine discrete chain eB contained in the ball 2K2B. Thus, it 
suffices to set e :=

∑
B∈B eB . �

We now discuss detouring around general collections of balls, which are allowed to 
intersect each other. For a function f and an integer n ≥ 0, we denote by f (n) the n–fold 
composition of f (in particular, f (0) = id and f (1) = f).

Lemma 3.5. Consider a finite subset B ⊆ 1
NB for some N ≥ 2K. Define

m := 1 + �logK(rmax(B)/rmin(B))�.

Let d ∈ Ci(S) be a g(m)(δ)–fine discrete chain with 1 ≤ i ≤ k and 0 < δ ≤ rmin(B). 
Suppose that supp(∂d) is disjoint from all balls in B.

Then there exists a discrete chain d′ in S such that:

(1) d′ is δ–fine and ∂d′ = ∂d;
(2) supp(d′) is disjoint from all balls in 1

2KB;
(3) supp(d′) is contained in the 8Krmax(B)–neighbourhood of supp(d);
(4) if ∂d �= 0, then diam(d′) ≤ diam(d) + 8K

√
2K diam(d);

(5) if d is g(m+1)(δ)–fine, then d − d′ = ∂e for a δ–fine discrete chain e contained in the 
(4K2 + 8K) · rmax(B)–neighbourhood of supp(d).

Proof. We begin by partitioning B = B1 � · · · �Bm so that a ball B lies in Bi exactly 
when r(B) lies in the half-open interval 

[
rmax(B)/Ki−1, rmax(B)/Ki

)
. Note that, in 

view of Equation (∗) and the fact that N ≥ 2K, each set 2KBi consists of pairwise 
disjoint balls.

We then set d0 := d and iteratively define di as the chain obtained by applying 
Lemma 3.4 to di−1 and the family of balls Bi. Finally, we set d′ := dm.

Note that each application of Lemma 3.4 is allowed. Indeed, the chain di is 
g(m−i)(δ)–fine and g(m−i)(δ) ≤ δ ≤ rmin(B) ≤ rmin(Bi+1). In addition, we have 
∂di = ∂d, which is disjoint from all balls in B.

We are left to check that the final chain d′ = dm satisfies all required properties. The 
previous paragraph shows that dm is δ–fine and ∂dm = ∂d, proving (1).

Regarding (3), note that di+1 and di only differ within a union of balls that inter-
sect supp(di) and lie in 2KBi+1. Hence supp(di+1) is contained in a neighbourhood of 
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supp(di) of radius at most 2 · rmax(2KBi+1) ≤ 4K · rmax(B)/Ki. Recalling that K ≥ 2, 
we deduce that supp(dm) is contained in a neighbourhood of supp(d) of radius at most:

4K · rmax(B) ·
∑
i≥0

1
Ki

≤ 8K · rmax(B).

Now, we prove (2). Consider a ball B ∈ B and say it lies in Bi. By Lemma 3.4, the 
chain di is supported outside 1

KB. We need to check that this property is not affected 
too much by subsequent detouring.

First, observe that the chain di+3 is also supported outside 1
KB. Indeed, setting for a 

moment B′ := Bi+1 ∪ Bi+2 ∪ Bi+3, the chains di and di+3 only differ within the balls 
in 2KB′. And, for every B′ ∈ B′, the ball 2KB′ is disjoint from 1

KB. Indeed, if this 
were not the case, the balls 2KB′ and 2KB would also intersect. These two balls are 
rescalings of elements of B by the same factor ≥ 1, because N ≥ 2K and B, B′ ∈ 1

NB. 
Thus, Equation (∗) would imply that r(B′) ≤ r(B)/K4, contradicting the fact that, since 
B′ ∈ B′, we have r(B′) > r(B)/K4.

Now, recalling that K ≥ 9, we obtain that supp(dm) is contained in a neighbourhood 
of supp(di+3) of radius at most:

4K ·
∑

j≥i+4
rmax(Bj) ≤ 4K · rmax(Bi+1) ·

∑
j≥3

1
Kj

≤ 4K · rmax(Bi+1) · 1
8K2 < 1

2K · r(B).

In conclusion, supp(dm) is disjoint from 1
2KB, for every B ∈ B.

Let us prove (4). Let 1 ≤ k ≤ m be the smallest integer such that dk �= dk−1. In 
particular, we have d = dk−1 and there exists a ball B ∈ Bk such that supp(d) ∩ 1

KB �= ∅
(otherwise we could have simply taken dk = dk−1, rather than applying Lemma 3.4). 
Since supp(∂d) is nonempty and disjoint from B, it follows that diam(d) ≥ 1

2 r(B) ≥
1

2K rmax(Bk).
Now, by part (4) of Lemma 3.4 and recalling that 

√
K ≥ 3, we obtain:

diam(dm) ≤ diam(d) + 4K
∑
j≥k

√
rmax(Bj)

≤ diam(d) + 4K
√
rmax(Bk)

∑
j≥0

K−j/2 ≤ diam(d) + 8K
√

2K diam(d).

Finally, we prove (5). Part (5) of Lemma 3.4 gives δ–fine chains e1, . . . , ek with di −
di−1 = ∂ei and supp(ei) contained in the union of the balls in 2K2Bi that intersect 
supp(di−1). In particular, supp(ei) is contained in a neighbourhood of supp(di−1) of 
radius at most 4K2 · rmax(B), and hence in a neighbourhood of supp(d) of radius at 
most (4K2 + 8K) · rmax(B), by the proof of property (3). We conclude by setting e :=
e1 + · · · + ek. �
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The detouring construction developed in Lemma 3.5 allows us to fill discrete cycles 
in a given stratum of X while remaining in a controlled larger stratum of X. This is the 
content of the next proposition, which is the main ingredient for the vanishing part of 
Theorems A and B.

Recall that C ∗(S) denotes the chain complex of reduced discrete chains in S, where 
0–chains are required to have zero coefficient sum.

Proposition 3.6. There exist functions f1(n) ≥ n, 0 < g1(δ, n) ≤ δ and h(r) (going to 0
for r → 0) such that the following holds for all δ > 0, n ≥ 1, 0 ≤ i < k.

If c ∈ C i(S) is a g1(δ, n)–fine discrete cycle supported in Xn, then there exists a δ–fine 
chain d supported in Xf1(n) with ∂d = c and diam(d) ≤ h(diam(c)).

Proof. Define f1(n) := 2K(n ∨ 2K) and set N := f1(n) for simplicity. Define r :=
1
N · r

(
N, δ/3

)
, where r(·, ·) is the function in Lemma 3.3, and consider:

B :=
{
B ∈ 1

NB | r(B) ≥ r
}
.

Set m = m(δ, n) := 1 + �logK(rmax(B)/rmin(B))� and g1(δ, n) := g(m+1)(δ), where 
δ := δ/3 ∧ 2Kr. Finally, define h(r) := r + Kr1/2 + 16K2r1/4.

Now, let c be a g1(δ, n)–fine, reduced, discrete i–cycle with i < k and supp(c) ⊆ Xn. 
Without loss of generality, we can assume that δ ≤ diam(c). Otherwise, we could simply 
define d as the cone over c from any of its vertices (Definition 1.2), which would satisfy 
supp(d) ⊆ Xn, fine(d) = diam(d) = diam(c) and c = ∂d.

By Proposition 2.1(0), there exists a g(m)(δ)–fine discrete chain d′ in S with ∂d′ = c

and diam(d′) ≤ K
√

diam(c). Note that c = ∂d′ is disjoint from all balls in 2KB, since 
supp(c) ⊆ Xn and every ball of 2KB is contained in one of 1

nB.
Applying Lemma 3.5 to d′ and the family of balls 2KB, we obtain a δ–fine (hence 

δ/3–fine) discrete chain d′′ in S such that ∂d′′ = ∂d′ and supp(d′′) is disjoint from all 
balls in B. In addition:

diam(d′′) ≤ diam(d′) + 8K
√

2K diam(d′) ≤ K
√

diam(c) + 16K2(diam(c))1/4.

Finally, by Lemma 3.3 and our choice of B, every point of supp(d′′) is δ/3–close to a 
point of XN . Replacing every point of supp(d′′) with a closest point in XN , we obtain 
a δ–fine chain d with ∂d = ∂d′′ = c and supp(d) ⊆ XN . Finally, since δ ≤ diam(c), we 
have diam(d) ≤ 2δ/3 + diam(d′′) ≤ h(diam(c)), concluding the proof. �

The next proposition is required for the non-vanishing part of Theorems A and B. This 
is the only place in Section 3 where we explicitly use the fact that S is homeomorphic 
to a sphere. In the rest of the section, we have only used this assumption indirectly, in 
the form of Proposition 2.1.

Before proving Proposition 3.8, we need the following observation.
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Remark 3.7 (Straight chains and straightening). Let (S, d◦) be a constant-curvature 
sphere. If D ⊆ S is a finite subset with diam(D) ≤ diam(S)/2, then there is a unique 
singular simplex σD that has vertex set D and maps every affine line in the standard 
simplex to a geodesic in S parametrised proportionally to arc-length.

We refer to simplices obtained in this way as straight simplices. A singular chain in 
(S, d◦) is straight if all its simplices are straight.

If c is a diam(S)/2–fine discrete chain in (S, d◦), we define its straightening ĉ. This 
is the singular chain obtained by replacing every discrete simplex of c with the straight 
singular simplex with the same (ordered) vertex set. Note that disc(ĉ) = c.

If c is δ–fine in (S, d◦), then supp(ĉ) is contained in the δ–neighbourhood of supp(c). 
Indeed, all metric balls in (S, d◦) with radius ≤ diam(S)/2 are convex.

Proposition 3.8. For every finite (nonempty) set of parabolic points F ⊆ S, there exists 
a stratum XN with the following property.

For every δ > 0, every class in Hk(S −F, Z) is represented by a singular cycle c such 
that disc(c) is δ–fine and contained in XN .

Proof. Let d◦ be a constant-curvature (i.e. round) metric on S. We continue denoting by 
ρ our chosen visual metric on S. When speaking of neighbourhoods, radii and fineness, 
we will always refer to ρ unless explicitly stated otherwise.

Note that ρ and d◦ induce the same topology on S, which is compact. Thus, there 
exists a weakly increasing function ξ such that ξ(t) → 0 for t → 0 and, for all x, y ∈ S, 
we have:

d◦(x, y) ≤ ξ(ρ(x, y)).

Let 3D > 0 be the minimum distance d◦(x, y) for distinct points x, y ∈ F . Let Σ be 
the union of the D–spheres around the points of F in the metric d◦. Note that, since F
is nonempty, the homology of S − F is entirely supported on Σ.

Up to shrinking δ, we can assume that ξ(δ) < D/3. We then choose the integer N so 
that:

ξ
(δ

3 + (4K2 + 8K) · diam(S, ρ)
N/2K

)
≤ D

3 .

Enlarging N if necessary, we further assume that N ≥ 4K2.
As in the proof of Proposition 3.6, set r := 1

N · r(N, δ/3), where r(·, ·) is the function 
in Lemma 3.3, and define:

B :=
{
B ∈ 1

NB | r(B) ≥ r
}
.

Set m := 1 + �logK(rmax(B)/rmin(B))� and δ′ := g(m+1)(δ/3 ∧ 2Kr).



E. Fioravanti et al. / Advances in Mathematics 443 (2024) 109601 39
Now consider any nonzero class α ∈ Hk(S−F, Z). Represent α by a straight, singular 
k–cycle ĉ such that c := disc(ĉ) is supported on Σ and δ′–fine (with respect to the visual 
metric ρ). This possible in view of Remark 3.7.

Applying Lemma 3.5 to c and the collection of balls 2KB, we obtain a δ/3–fine 
discrete cycle c′ supported outside all balls in B. In addition, using part (5) of Lemma 3.5, 
there exists a δ/3–fine discrete chain e with ∂e = c − c′ and supp(e) contained in the 
(4K2 + 8K) · rmax(2KB)–neighbourhood of supp(c) ⊆ Σ. Note that:

rmax(2KB) ≤ diam(S, ρ)
N/2K .

By Lemma 3.3 and our choice of B, every point of supp(c′) is δ/3–close to a point of 
XN . Thus, we can modify c′ to a δ–fine discrete cycle c′′, and e to a δ–fine discrete chain 
e′, so that ∂e′ = c − c′′ and that supp(c′′) ⊆ XN . Note that supp(e′) is contained in the 
δ/3–neighbourhood of supp(e).

Since ξ(δ) < D/3, the chain e′ is D/3–fine with respect to the metric d◦. In addition, 
our choice of N guarantees that supp(e′) is contained in the D/3–neighbourhood of 
supp(c) ⊆ Σ with respect to the metric d◦. Remark 3.7 then shows that the straightening 
ê′ of e′ is supported in the 2D/3–neighbourhood of Σ, which is disjoint from F .

Finally, denoting by ĉ′′ the straightening of c′′, and recalling that ĉ was straight to 
begin with, we obtain ∂ê′ = ĉ− ĉ′′. Since supp(ê′) ∩F = ∅, this shows that α = [ĉ] = [ĉ′′]
in Hk(S−F, Z). Since disc(ĉ′′) = c′′, which is δ–fine and supported on XN , this concludes 
the proof. �

We will also need the following relation between singular and discrete cycles, for which 
it is convenient to use the constant-curvature metric d◦.

Lemma 3.9. Let F be a finite subset of (S, d◦). Every open cover U of S − F containing 
only convex open sets of diameter ≤ diam(S)/2 satisfies the following property.

If c is a straight U–fine singular cycle in S−F and disc(c) is the boundary of a U–fine 
discrete chain, then [c] = 0 in the singular homology of S − F .

Proof. Suppose that disc(c) = ∂d, for a U–fine discrete chain d. Let ĉ and d̂ be the 
straightenings of disc(c) and d, as defined in Remark 3.7. By convexity of the elements 
of U , the singular chains ĉ and d̂ are again U–fine (and contained in S − F ). We have 
∂d̂ = ĉ by construction and, moreover, the singular cycle c − ĉ is also the boundary of 
a singular chain that is U–fine (hence contained in S − F ), again by convexity of U . In 
conclusion, c is the boundary of singular chain contained in S − F . �
Remark 3.10. It is easy to see that, for every finite subset F ⊆ S, the complement S −F

admits a convex cover as in the lemma.
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4. Vanishing of Čech cohomology

Throughout Section 4, we again consider a relatively hyperbolic group G, its Morse 
boundary X := ∂∗G and the filtration X = lim−−→Xn. Notation and assumptions are exactly 
the same as in Section 3 (in particular, see Subsection 3.2 for the precise assumptions 
on G).

We fix a visual metric ρ on the Bowditch boundary and equip X and all strata Xn

with its restriction. We stress once more that ρ does not induce the topology of X, 
though it does induce that of each Xn. When speaking e.g. of fineness of chains below, 
this will always be meant with respect to this metric.

Our only tool in Section 4 is Proposition 3.6, so all results in this section hold more 
generally for any countable direct limit X = lim−−→Xn of compact metric spaces Xn satis-
fying Proposition 3.6.

The main result for this section is the vanishing of Čech cohomology in low degrees, 
proving the first part of Theorem B and, consequently, also the first part of Theorem A.

Theorem 4.1. Let R be a principal ideal domain. Then, for X = ∂∗G, we have 
Ȟi(X, R) = {0} for 1 ≤ i < k.

All chains and simplices in the following discussion are assumed to be discrete without 
explicit mention.

4.1. Subdivision results

Let Ci(Xn) be the free Z–module generated by (discrete) i–simplices with support 
contained in Xn. For δ > 0, let Ci(Xn; δ) be the submodule of Ci(Xn) generated by 
δ–fine simplices. For an open cover O of X, we denote by Ci(Xn, O) the submodule of 
Ci(Xn) formed by O–fine chains, and by Ci(Xn, O; δ) its intersection with Ci(Xn; δ).

The main aim of this subsection is the following result, proved at the end.

Proposition 4.2 (Arbitrarily fine subdivisions). For every open cover O of X, there exist 
a refinement O′ and a function f2(n) ≥ n such that the following hold.

(1) For every δ > 0, there is a chain map φδ : C∗(Xn, O′) → C∗(Xf2(n), O; δ) defined in 
degrees ≤ k.

(2) The composition ιφδ : C∗(Xn, O′) → C∗(Xf2(n), O) is chain-homotopic to ι, where ι
denotes all standard inclusions.

In particular, part (2) of Proposition 4.2 implies that, for every cycle c ∈ Ci(Xn, O′), 
the cycles c and φδ(c) are O–homologous, in the sense that there exists an O–fine chain 
d such that ∂d = c − φδ(c).
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As a first step towards the proof of Proposition 4.2, we need Proposition 4.5, which 
is an analogue disregarding covers. The proof of Proposition 4.5 is almost exactly the 
same, but it relies on Proposition 3.6 rather than Proposition 4.7 below.

Recall that the face complex F∗(d) of a discrete chain d was introduced in Defini-
tion 1.4.

Definition 4.3. Consider r > 0 and a subset Y ⊆ X. A chain c is (r, Y )–related to a 
chain c′ if there exists a chain map T : F∗(c) → C∗(Y ) such that T (c) = c′ and, for each 
simplex σ ∈ F∗(c), the support of the chain T (σ) is contained in the r–neighbourhood 
of supp(σ).

Remark 4.4 (Projecting discrete chains). Let c be an i–chain in X. If supp(c) is contained 
in the ε–neighbourhood of a subspace Y ⊆ X, for some ε > 0, we can project c to a 
chain in Y as follows.

For every point x ∈ supp(c), choose a point x′ ∈ Y with ρ(x, x′) < ε. Write c =
∑

j σj , 
where each σj is an i–simplex. For each σj = [x0, . . . , xi], define the new simplex σ′

j =
[x′

0, . . . , x
′
i] and set c′ :=

∑
j σ

′
j . We will refer to c′ as an ε–projection of c to Y . Note 

that, by construction, c is (ε, Y )–related to c′ and fine(c′) ≤ fine(c) + 2ε.

Proposition 4.5. There exist functions f3(n) ≥ n and H(r), H ′(r) (both going to 0 for 
r → 0) such that the following holds.

(1) For all δ > 0 and n ≥ 1, there is a chain map φδ,n : C∗(Xn) → C∗(Xf3(n); δ) defined 
in degrees ≤ k.

(2) If c ∈ Ci(Xn; r) for some r > 0 and 0 ≤ i ≤ k, then φδ,n
i c is contained in the 

H(r)–neighbourhood of supp(c).
(3) If a cycle c ∈ Ci(Xn+1; r) with 0 ≤ i < k is (r, Xn)–related to a cycle c′ ∈ Ci(Xn; r), 

then φδ,n+1
i c −φδ,n

i c′ = ∂B for a δ–fine chain B contained in the H ′(r)–neighbourhood 
of supp(c) within Xf3(n).

Proof. Fix n and δ for the duration of the proof. We will write φi for φδ,n
i , that is, for 

the restriction of φδ,n to i–chains.
Let f1, g1, h be the functions appearing in Proposition 3.6. Without loss of generality, 

we can assume that g1 is weakly decreasing in its second argument and that f1 is weakly 
increasing.

Define ni := f
(i)
1 (n) and mi := f

(i)
1 (n + 1), recalling that f (i)

1 denotes the i–fold 
composition of f1. Define δk+1 := δ and inductively δi−1 := g1(δi, mi−1); the fact that 
we are using mi−1 rather than ni−1 will only matter in part (3). Define r0 = 0 and 
inductively ri+1 := h(r + 2ri) + ri; each ri is a function of r. Note that ni, δi and ri all 
increase with i.

We now proceed by induction on 0 ≤ i ≤ k and construct maps

φi : Ci(Xn) −→ Ci(Xni
; δi)
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Fig. 5. Illustrative diagram of the proof of part (1) of Proposition 4.5, showing the inductive construction 
of the maps φi.

so that ∂φi = φi−1∂. In addition, if σ ∈ Ci(Xn; r) is a simplex, then supp(φiσ) will be 
contained in the ri–neighbourhood of supp(σ). See Fig. 5.

In the base step, we simply take φ0 to be the identity. In the inductive step, suppose 
that, for some 0 ≤ i ≤ k − 1, we have defined all maps up to φi so that they satisfy the 
required properties. We want to define φi+1.

If σ ∈ Ci+1(Xn) is a simplex, then φi∂σ is a cycle in Ci(Xni
; δi), by the inductive 

hypothesis. Note that δi ≤ g1(δi+1, ni), since mi ≥ ni. In addition, if σ ∈ Ci+1(Xn; r), 
then supp(φi∂σ) is contained in the ri–neighbourhood of supp(σ). In this case, the 
diameter of supp(φi∂σ) is at most r + 2ri.

By Proposition 3.6, the cycle φi∂σ is the boundary of a chain in Ci+1(Xni+1 ; δi+1)
with diameter at most h(r + 2ri). We define φi+1σ as this chain.

Note that supp(φi+1σ) ⊇ supp(∂φi+1σ) = supp(φi∂σ). We have already observed that 
the latter is contained in the ri–neighbourhood of supp(σ). It follows that supp(φi+1σ)
is contained in the neighbourhood of supp(σ) of radius ri + h(r + 2ri) = ri+1.

Defining f3(·) as the function n �→ nk and H(·) as the function r �→ rk, this proves 
parts (1) and (2). In fact, in view of the proof of part (3) below, we should define f3(·)
as the (larger) function n �→ mk.

We now prove part (3). Suppose that we have chain subcomplexes (each generated by 
a set of simplices)

E∗ ⊆ C∗(Xn+1; r), F∗ ⊆ C∗(Xn; r),

and a chain map T∗ : E∗ → F∗ such that, for every simplex σ ∈ E∗, the support of T (σ)
is contained in the r–neighbourhood of supp(σ).

Define R−1 := r + H(r), then inductively Ri+1 := h(r + 2Ri) + Ri. Proceeding by 
induction on 0 ≤ i < k, we will construct a chain homotopy

Hi : Ei → Ci+1(Xmi+1 ; δi+1)
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Fig. 6. Illustrative diagram of the proof of part (3) of Proposition 4.5.

so that ∂Hi+Hi−1∂ = φn+1,δ
i −φn,δ

i Ti. In addition, for every simplex σ ∈ Ei, the support 
of Hiσ will be contained in the Ri–neighbourhood of supp(σ). See Fig. 6.

The base step “i = −1” is clear, taking H−1 = 0. In the inductive step, suppose that, 
for some 0 ≤ i < k, we have defined all maps up to Hi−1 so that they satisfy the required 
properties.

In order to define Hi, consider a simplex σ ∈ Ei. Note that

Σ := (φn+1,δ
i − φn,δ

i Ti −Hi−1∂)σ

is a cycle in Ci(Xmi
; δi). (Since the function g1(·, ·) is decreasing in its second argument, 

the “δi” appearing in the definition of φδ,n+1 is smaller than the one appearing in the 
definition of φδ,n, which is the one used here. Thus, Σ is indeed δi–fine.)

In addition, supp(Σ) is contained in the neighbourhood of supp(σ) of radius Ri−1, 
since Ri−1 ≥ r+H(r) by construction. In particular, the diameter of supp(Σ) is at most 
r + 2Ri−1.

By Proposition 3.6, we can fill Σ by a chain in Ci+1(Xmi+1 ; δi+1) with diameter at 
most h(r + 2Ri−1). (Here it finally matters that we used mi−1 in the definition of δi at 
the beginning of the whole proof.) We define Hiσ as this chain which fills Σ.

It is clear that supp(Hiσ) is contained in the neighbourhood of supp(σ) of radius:

h(r + 2Ri−1) + Ri−1 = Ri.

This completes the construction of the chain homotopy H∗. If c, c′ are as in the 
statement of part (3), we have φδ,n+1

i c − φδ,n
i c′ = ∂Hic. It is clear that Hic is δ–fine and 

that its support is contained in the neighbourhood of supp(c) of radius Ri. We can thus 
define H ′(·) as the function r �→ Rk.

This concludes the proof of the proposition. �
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Proposition 4.5 allows us to arbitrarily “refine” chains, but it completely disregards 
open covers of X. Thus, as a second step towards Proposition 4.2, we will need to 
be able to fill cycles while remaining within a given open set. This is the content of 
Proposition 4.7 below, after which we will finally prove Proposition 4.2.

Before stating Proposition 4.7, we record the following observation.

Lemma 4.6. Let a cycle c ∈ C∗(Xn; δ) be (δ, Xn)–related to a cycle c′ ∈ C∗(Xn), for some 
δ > 0 and n ≥ 1. Then there exists a chain d ∈ C∗(Xn; 3δ) such that ∂d = c − c′ and 
supp(d) is contained in the δ–neighbourhood of supp(c).

Proof. The proof is similar to that of part (3) of Proposition 4.5, but simpler.
Let T : F∗(c) → C∗(Xn) be the chain map witnessing the fact that c and c′ are 

(δ, Xn)–related. For each simplex σ ∈ F∗(c), denote by T (σ) the union of the sets 
supp(Tτ) where τ ranges over σ and all its lower-dimensional faces. Thus, T (σ) con-
tains supp(Tσ), but it can be larger in general. Nevertheless, T (σ) is contained in 
the δ–neighbourhood of supp(σ) in Xn. In addition, recalling that c is δ–fine, we have 
diam(supp(σ) ∪ T (σ)) ≤ 3δ for every simplex σ ∈ F∗(c).

Now, for each i ≥ 0, we inductively construct a chain homotopy

Hi : Fi(c) −→ Ci+1(Xn; 3δ)

satisfying ∂Hi + Hi−1∂ = id − Ti and supp(Hiσ) ⊆ supp(σ) ∪ T (σ) for every simplex 
σ ∈ Fi(c).

In the base step “i = −1”, we simply set H−1 = 0. In the inductive step, suppose that, 
for some i ≥ 0, we have defined all maps up to Hi−1 so that they satisfy the required 
properties.

In order to define Hi, consider a simplex σ ∈ Fi(c) and observe that Σ := (id − Ti −
Hi−1∂)σ is a cycle with support contained in supp(σ) ∪T (σ) ⊆ Xn. Then we simply define 
Hiσ as the cone over Σ from any of its vertices (Definition 1.2). We obtain ∂Hiσ = Σ and 
supp(Hiσ) ⊆ supp(Σ) ⊆ supp(σ) ∪ T (σ). As observed above, this guarantees that Hiσ

has diameter at most 3δ and that it is supported in the δ–neighbourhood of supp(σ).
Finally, set d := Hc. Since c is a cycle, we have ∂d = c − Tc = c − c′. In addition, d

is 3δ–fine and it is supported in the δ–neighbourhood of supp(c). �
Recall that C ∗(S) denotes the chain complex of reduced discrete chains in S, where 

0–chains are required to have zero coefficient sum. Also recall the notion of O–tiny chain 
from Definition 1.1.

Proposition 4.7. For every open cover O of X = lim−−→Xn, there exist a refinement O′ and 
functions f4(n) ≥ n and 0 < g2(δ, n) ≤ δ such that the following holds.

For 0 ≤ i < k, let c ∈ C i(Xn) be an O′–tiny, g2(δ, n)–fine cycle. Then c = ∂d for an 
O–tiny, δ–fine chain d supported within Xf4(n).
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The proposition is proved right after the following lemma.

Lemma 4.8. For every open cover O of X, there exist functions f4(n) ≥ n and 0 <
g3(x, δ, n) ≤ δ such that the following holds for all x ∈ X, δ > 0 and n ≥ 1.

There exists an O–tiny open set Ux � x with the following property. If c is a 
g3(x, δ, n)–fine, reduced i–cycle with 0 ≤ i < k and c ⊆ Xn ∩ Ux, then c = ∂d for 
an O–tiny δ–fine chain d with d ⊆ Xf4(n).

Proof. We will construct the open sets Ux using the inductive Construction 1.14 (where 
the parameters are also determined inductively). Fix the open cover O and the point 
x ∈ X. Let � ≥ 1 be the integer such that x ∈ X� −X�−1. Choose an element Ox ∈ O
with x ∈ Ox, which will be fixed throughout the proof.

Let f1, h be the functions provided by Proposition 3.6, and f3, H, H ′ those provided 
by Proposition 4.5. Recall that these functions are all bounded below by the identity and, 
without loss of generality, weakly increasing. Define f4 := f1 ◦ f3. Also, recall that we 
are fixing the visual metric ρ on X, although this only induces the topology of compact 
strata in X.

For a sequence of real numbers ε = (εj)j≥� and an integer m ≥ �, we introduce the no-
tation σm(ε) :=

∑
j≥m εj . We also define the sets U ε

x(m) and U ε
x as in Construction 1.14. 

Namely, U ε
x(�) is the open ε�–ball around x within X� and, for m > �, the set U ε

x(m) is 
obtained inductively as the open εm–neighbourhood of U ε

x(m − 1) within Xm. Finally, 
we have U ε

x :=
⋃

m≥� U
ε
x(m), which is open in X.

In the rest of the proof, we fix a sequence of positive numbers ε = (εj)j≥� such that 
the following conditions hold:

(1) the closure of U ε
x(j) is contained in Ox, for each j ≥ �;

(2) H(3σ�+1(ε)) + h(2ε� + 2H(3σ�+1(ε))) < ρ(U ε
x(�), Xf4(�) −Ox);

(3) σj+1(ε) + H ′(3σj(ε)) < ρ(U ε
x(j), Xf3(j) −Ox), for each j ≥ �.

This is possible because the functions h(r), H(r), H ′(r) all go to zero for r → 0. Thus, 
there exists ε� > 0 such that the sequence (ε�, 0, 0, . . . ) satisfies the above conditions. And, 
if a sequence (ε�, . . . , εm, 0, 0, . . . ) satisfies these conditions, then there exists εm+1 > 0
such that the sequence (ε�, . . . , εm, εm+1, 0, . . . ) also does.

Now, set Ux := U ε
x, for our fixed sequence ε. For simplicity, we will simply write Ux(m)

and σm in the rest of the proof, rather than U ε
x(m) and σm(ε).

By condition (1), we have Ux ⊆ Ox. We now show that this open set satisfies the 
property claimed by the lemma.

Fix n ≥ 1 and δ > 0. Choose η > 0 small enough that:

(1′) η ∨H(η) ≤ δ/3;
(2′) H(η + 2σ�+1) + h(2ε� + 2H(η + 2σ�+1)) < ρ(Ux(�), Xf4(�) −Ox);
(3′) σj+1 + 3H(η) + H ′(η + 2σj) < ρ(Ux(j), Xf3(j) −Ox), for all � ≤ j ≤ n.
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Conditions (2′) and (3′) can be achieved because ε was chosen to satisfy conditions (2) 
and (3) above. The resulting value of η only depends on x, n, δ, so we can define the 
function in the statement of the lemma as g3(x, δ, n) := η.

Now, consider an η–fine reduced i–cycle c with 0 ≤ i < � and supp(c) ⊆ Xn ∩Ux. Let 
us construct a δ–fine chain d with ∂d = c and supp(d) ⊆ Ox ∩Xf4(n). It is convenient to 
set δ′ := g1(δ, f3(n)) ≤ δ, where g1 is the function provided by Proposition 3.6.

We begin by constructing a sequence of cycles (cj)�≤j≤n−1 with supp(cj) ⊆ Ux(j). 
First, we define cn−1 as a σn–projection of c to Ux(n − 1), in the sense of Remark 4.4; 
this exists because supp(c) ⊆ Xn∩Ux is contained in the σn+1–neighbourhood of Ux(n), 
which is contained in the εn–neighbourhood of Ux(n − 1). Then, for each � ≤ j ≤ n − 2, 
we define inductively cj as an εj+1–projection of cj+1 to Ux(j).

Note that fine(cj) ≤ η+2σj+1 for each � ≤ j ≤ n −1. In addition, cj is (εj , Xj)–related 
to cj−1, and c is (σn, Xn−1)–related to cn−1.

We now refine these cycles using the chain maps provided by Proposition 4.5. Specif-
ically, recall that δ′ = g1(δ, f3(n)) and define c′j := φδ′,jcj for each � ≤ j ≤ n − 1 and 
c′ := φδ′,nc. Part (3) of the proposition guarantees the existence of δ′–fine chains Bj

with ∂Bj = c′j+1 − c′j and supp(Bj) contained in the H ′(η + 2σj+1)–neighbourhood of 
supp(cj+1) within Xf3(j+1), for each � ≤ j ≤ n − 2. Since supp(cj+1) ⊆ Ux(j + 1), this 
implies that supp(Bj) ⊆ Ox, by applying condition (3′) above.

Similarly, we have ∂Bn−1 = c′ − c′n−1 and supp(Bn−1) is contained in the neighbour-
hood of supp(c) ⊆ Xn ∩ Ux of radius H ′(η + 2σn) within Xf3(n). Thus, supp(Bn−1) is 
contained in the (σn+1 + H ′(η + 2σn))–neighbourhood of Ux(n) within Xf3(n). Hence 
supp(Bn−1) ⊆ Ox, again by condition (3′).

In conclusion, the chain (B� + · · ·+Bn−1) is δ′–fine, supported in Ox ∩Xf3(n) and it 
satisfies ∂(B� + · · · + Bn−1) = c′ − c′�. Thus, we are only left to similarly fill the cycles 
c′� and c − c′.

First, we deal with c′�. Observe that c′� is δ′–fine and, by part (2) of Proposition 4.5, it is 
supported in the H(η+2σ�+1)–neighbourhood of c� within Xf3(�). Since δ′ = g1(δ, f3(n))
and n ≥ �, Proposition 3.6 allows us to fill c′� by a δ–fine chain B�−1 supported in 
Xf1(f3(�)) = Xf4(�) and with diam(B�−1) ≤ h(diam(c′�)). In particular, supp(B�−1) is 
contained in the neighbourhood of supp(c�) ⊆ Ux(�) in Xf4(�) of radius:

H(η + 2σ�+1) + h(2ε� + 2H(η + 2σ�+1)),

where we have used the fact that diam(c�) ≤ 2ε�, since c� is contained in an ε�–ball. 
Now, condition (2′) implies that supp(B�−1) is contained in Ox.

Finally, we fill c −c′. Note that c is η–fine and (H(η), Xf3(n))–related to c′, by part (2) 
of Proposition 4.5.

Thus, Lemma 4.6 yields c − c′ = ∂Bn for a chain Bn with fine(Bn) ≤ 3H(η) ≤ δ

(by condition (1′)) and supp(Bn) contained in the H(η)–neighbourhood of supp(c) in 
Xf3(n). Since supp(c) is contained in the σn+1–neighbourhood of Ux(n), condition (3′)
again shows that supp(Bn) ⊆ Ox.
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Summing up, we have c = ∂(B�−1 + B� + · · · + Bn−1 + Bn), where each Bi is δ–fine 
and supported within Xf4(n) ∩Ox. This concludes the proof. �
Proof of Proposition 4.7. For each � ≥ 1, choose a finite subset A� ⊆ X� such that 
X� ⊆

⋃
x∈A�

Ux, where the sets Ux are provided by Lemma 4.8. Define O′ :=
⋃

�≥1{Ux−
X�−1 | x ∈ A�}. It is clear that all elements of O′ are open in X, that they cover X, and 
that O′ refines O.

Now, define g2(δ, n) := infx∈A0∪···∪An
g3(x, δ, n); since the infimum is taken over a 

finite set, we have g2(δ, n) > 0. Let c be a reduced g2(δ, n)–fine i–cycle supported within 
Xn ∩ O′, for some O′ ∈ O′. We necessarily have O′ = Uy − X�−1 for some y ∈ A�

with � ≤ n. It follows that c is, in particular, g3(y, δ, n)–fine, hence Lemma 4.8 yields an 
O–tiny δ–fine chain d with supp(d) ⊆ Xf4(n) and ∂d = c. �

We are finally ready to prove Proposition 4.2. The argument is almost identical to the 
one in the proof of Proposition 4.5, except that we will use Proposition 4.7 in place of 
Proposition 3.6.

Proof of Proposition 4.2. Fixing δ > 0, we will simply write φ for the chain map φδ. We 
will prove the proposition by induction on the degree i of chains. The key ingredient 
in the construction of φ is Proposition 4.7, while the chain homotopy will be obtained 
filling chains trivially via Definition 1.2.

Set O0 := O. Define inductively refinements Oi+1 < O′
i < Oi < Oi as follows. First, 

Oi is a super-refinement of Oi, then O′
i is the refinement of Oi provided by Proposi-

tion 4.7, and finally Oi+1 is a double super-refinement of O′
i (as in Remark 1.11).

Let fi and gi be the functions appearing in Proposition 4.7 applied to the cover 
Oi. Define n0 := n and inductively ni = fk+1−i(ni−1). Define δk := δ and inductively 
δi−1 = gk+1−i(δi, ni−1). Note that both ni and δi increase with i.

We begin by inductively constructing maps

φi : Ci(Xn,Ok+1) −→ Ci(Xni
,Ok+1−i; δi)

for 0 ≤ i ≤ k so that ∂φi = φi−1∂. For the induction process to work, we addition-
ally require that, for every simplex σ ∈ Ci(Xn, Ok+1), the set supp(φiσ) ∪ supp(σ) be 
Ok+1−i–tiny. See Fig. 7

In the base step “i = 0”, we can simply take φ0 to be the identity. In the inductive step, 
suppose that, for some 0 ≤ i ≤ k− 1, we are given all maps up to φi so that they satisfy 
the required properties. In order to define φi+1, consider a simplex σ ∈ Ci+1(Xn, Ok+1). 
Note that φi∂σ is a cycle and lies in Ci(Xni

, Ok+1−i; δi).
We claim that supp(φi∂σ) ∪ supp(σ) is O′

k−i–tiny. This is clear for i = 0 since φ0 is 
the identity. For i ≥ 1, let τ0, . . . , τi+1 be the i–simplices in ∂σ. By our assumptions on 
φi, each set supp(φiτj) ∪ supp(τj) is contained in some Oj ∈ Ok+1−i. Thus, O0, . . . , Oi+1
pairwise intersect, hence they are all contained in some O′ ∈ O′

k−i by Remark 1.11, since 
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Fig. 7. Proof of part 1 of Proposition 4.2.

Ok+1−i was defined as a double super-refinement of O′
k−i. In conclusion, O′ contains 

supp(φi∂σ) ∪ supp(σ).
Now, we have shown that φi∂σ is O′

k−i–tiny, δi–fine, and contained in Xni
. Recalling 

that ni+1 = fk−i(ni) and δi = gk−i(δi+1, ni), Proposition 4.7 implies that φi∂σ (which 
is reduced as any boundary is reduced) is the boundary of an Ok−i–tiny, δi+1–fine chain 
contained in Xni+1 . We define φi+1σ as this chain.

It is clear that we have ∂φi+1 = φi∂. We are left to show that supp(φi+1σ) ∪ supp(σ)
is Ok−i–tiny. Recall that supp(φi∂σ) ∪supp(σ) is O′

k−i–tiny, say contained in O′ ∈ O′
k−i. 

In addition, supp(φi+1σ) is Ok−i–tiny, say contained in O ∈ Ok−i. Note that O∩O′ �= ∅, 
since

supp(φi+1σ) ⊇ supp(∂φi+1σ) = supp(φi∂σ).

Recalling that O′
k−i is a refinement of Ok−i, which is a super-refinement of Ok−i, 

we conclude that O ∪ O′ is contained in an element of Ok−i. This element contains 
supp(φi+1σ) ∪ supp(σ), as required.

Finally, we construct a chain-homotopy H. We will inductively define maps

Hi : Ci(Xn,Ok+1) −→ Ci+1(Xni
,Ok−i)

for 0 ≤ i ≤ k so that φi − id = ∂Hi + Hi−1∂. Again, for the induction to work, we also 
require that, for every σ ∈ Ci(Xn, Ok+1), the set supp(Hiσ) ∪ supp(σ) be Ok−i–tiny. See 
Fig. 8.

In the base step “i = 0”, we can just take H0 to be the zero map, since φ0 is the identity. 
In the inductive step, suppose that we are given all maps up to Hi so that they satisfy 
the required properties. In order to define Hi+1, consider a simplex σ ∈ Ci+1(Xn, Ok+1). 
Note that:

∂(φi+1σ − σ −Hi∂σ) = φi∂σ − ∂σ − (φi − id −Hi−1∂)∂σ = 0.
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Fig. 8. Proof of part 2 of Proposition 4.2.

We claim that the cycle (φi+1σ−σ−Hi∂σ) is Ok−i−1–tiny. Recall that supp(φi+1σ) ∪
supp(σ) is contained in some O ∈ Ok−i. In addition, if τ0, . . . , τi+1 are the i–simplices in 
∂σ, there exist Oj ∈ Ok−i containing supp(Hiτj) ∪ supp(τj). Since O, O0, . . . , Oi+1 are 
pairwise-intersecting elements of Ok−i, their union is contained in some O ∈ Ok−i−1 (for 
this, note that Ok−i is a double super-refinement of Ok−i−1 and apply Remark 1.11). 
Now, O contains the support of (φi+1σ − σ −Hi∂σ), as required.

Finally, by Lemma 1.3, the cycle (φi+1σ−σ−Hi∂σ) is the boundary of the cone over 
any of its vertices, which is an (i + 2)–chain contained in Xni+1 ∩ O. We define Hi+1σ

as this chain. It is clear from the construction that ∂Hi+1 + Hi∂ = φi+1 − id and that 
supp(Hi+1σ) ∪ supp(σ) is contained in O, hence it is an Ok−i−1–tiny set.

This concludes the whole proof, setting O′ := Ok+1 and f2(n) := nk. �

4.2. Main result

We are finally ready to prove Theorem 4.1, which is the main result of this section. 
It claims that, Ȟi(X, R) = {0} for a principal ideal domain R and for 1 ≤ i < k, where 
X = ∂∗G.

First, combining Propositions 3.6 and 4.2, we quickly obtain that X satisfies Condi-
tion (DAi) in low degrees, which was introduced in Subsection 1.2.

Proposition 4.9. For every open cover O of X, there exists a refinement O′ such that, 
for every 1 ≤ i < k, every O′–fine discrete i–cycle is the boundary of an O–fine discrete 
chain.

Proof. Let λn be a Lebesgue number for the cover {O∩Xn | O ∈ O} of Xn. Let f1, g1, f2
be the functions provided by Propositions 3.6 and 4.2. Let O′ be the refinement of O
provided by Proposition 4.2. Set δ := g1(λf1(f2(n)), f2(n)).

Let c be an O′–fine cycle. By Proposition 4.2, c is O–homologous to a δ–fine cycle c′

with supp(c′) ⊆ Xf2(n). By Proposition 3.6, we have c′ = ∂d′ for a λf1(f2(n))–fine chain 
d′ with supp(d′) ⊆ Xf1(f2(n)). In particular, d′ is O–fine, showing that c is the boundary 
of an O–fine chain. �
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Proof of Theorem 4.1. By Proposition 1.12, the topological space X is super-refinable. 
Proposition 4.9 shows that X satisfies Condition (DAi) for 1 ≤ i < k, so Corollary 1.10
yields Ȟi(X, R) = {0} in the same range. �
5. Non-vanishing

Throughout Section 5, we again consider a relatively hyperbolic group G, its Morse 
boundary X := ∂∗G and the filtration X = lim−−→Xn. Notation and assumptions are 
exactly the same as in the previous sections (see e.g. Subsection 3.2). In particular, the 
Bowditch boundary S of (G, P) is homeomorphic to a (k+ 1)–dimensional sphere Sk+1.

The goal of this section is to prove the second part of Theorem B (which implies the 
second part of Theorem A). To do so, we show that for any finite set of parabolic points 
F , the rank of the singular homology Hk(S − F, Z) (as an abelian group) is a lower 
bound to the dimension of Ȟk(∂∗G, F), where F is a field of characteristic 0. Recall that 
the rank of an abelian group A, which we denote by rkA, is the maximal cardinality of 
a linearly independent subset.

The following is the crucial lemma in this section. Roughly speaking, it shows that, 
if there are many discrete cycles that are not boundaries, then the Čech cohomology is 
large. Note however that we have to be rather careful with how fine the various chains 
are.

Lemma 5.1. Let F be a field of characteristic 0. Every open cover O of X admits a 
refinement O′ such that

dim Ȟk(X,F)

≥ rk
(
{O′–fine k–cycles}/{O′–fine boundaries of O–fine (k + 1)–chains}

)
.

Proof. Let O2 
 O1 
 O be a chain of super-refinements and let O′ < O2 be the 
refinement provided by Proposition 4.2. The following diagram is an overview of the 
various covers and chain maps that we will introduce during the proof.

C∗(X,O′) C∗(X,O2) C∗(N(O1)) C∗(X,O)

C∗(X,U ′) C∗(N(U))

g∗ g′
∗

h′
∗

h∗⊆

⊆

Let g : X → O1 be an (O2, O1)–parent map and g′ : O1 → X be a child map. Recalling 
the chain map g∗ from discrete chains to chains in nerves provided by Lemma 1.8, we 
can consider the map Φ: {O′–fine k–cycles} → Hk(N(O1), Z) given by c �→ [g∗(c)].

If [g∗(c)] = [g∗(c′)] there exists some d ∈ Ck+1(N(O1)) with ∂d = g∗(c) − g∗(c′). 
Lemma 1.8 implies that g′∗ ◦ g∗ : C∗(X, O2) → C∗(X, O) is a chain map homotopic to the 
standard inclusion and that g′∗(d) is O–fine. Thus c − c′ = ∂g′∗(d) + ∂d′ for some O–fine 
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chain d′. This shows that Ker(Φ) ⊆ {boundaries of O–fine (k + 1)–chains}. Define A =
Im(Φ).

From now on we identify Hk(·, F) with Hom(Hk(·, Z), F), and denote it simply by 
Hk(·). We are only left to show that dim Ȟk(X, F) ≥ rk(A).

Claim. There exists a linear subspace V of Hk(N(O1)) of dimension rk(A) and such 
that, for all ψ ∈ V − {0}, we have ψ|A �= 0.

Proof of Claim. Let {xi} be a maximal linearly independent subset of A, and extend it 
to a maximal linearly independent subset {xi} �{yj} of Hk(N(O1), Z). We claim that we 
can take V to be the subspace of Hk(N(O1)) of all elements that vanish on all yj . Indeed, 
we now argue that any map f : {xi} � {yj} → F extends uniquely to a homomorphism 
hf in Hk(N(O1)); this gives both the dimension bound and the non-vanishing property 
from the claim.

To define hf , we note that all x ∈ Hk(N(O1), Z) have a multiple nxx that lies in 
L̄ = 〈{xi} � {yj}〉 for some integer nx �= 0, by maximality. By linear independence, f
extends to a homomorphism f̄ defined on L̄, which we can then further extend by setting 
hf (x) = f̄(nxx)/nx. It is readily checked that hf is a well-defined homomorphism, and 
the only one that restricts to f on {xi} � {yj}. �

We now show that V as in the claim embeds in Ȟk(X, F). Indeed, consider any 
α ∈ V − {0} and consider any refinement U < O1 and any spouse map h : U → O1. We 
have to show h∗(α) �= 0 for the induced map h∗ : Hk(N(O1)) → Hk(N(U)).

Since α ∈ V − {0} there exists a homology class c̃ ∈ A such that α(c̃) �= 0. By 
the definition of A, there exists a cycle c ∈ Ck(X, O′) such that [g∗(c)] = c̃. There 
exists some n ∈ N such that c ⊆ Xn. Let U ′ be a super-refinement of U that is also a 
refinement of O′ and let h′ : X → U be a (U ′, U)–parent map. Let f be the function f2
from Proposition 4.2 applied to the open cover O2.

Let δ be a Lebesgue number for the open cover {U ′∩Xf(n) | U ′ ∈ U ′} of the compact 
space Xf(n). By Proposition 4.2 applied to O2, δ and c, there exists a O2–fine, δ–fine 
cycle c′ ⊆ Xf(n) which is O2–homologous to c. Since g∗ : C∗(X, O2) → C∗(N(O1)) is a 
chain map, we have that [g∗(c)] = [g∗(c′)]. Also, by the choice of δ, the cycle c′ is U ′–fine.

Note that both g and h ◦h′ are (U ′, O1)–parent maps, so Lemma 1.8 shows that their 
induced maps Ck(X, U ′) → Ck(N(O1)) are chain-homotopic. Defining cU = h′

∗(c′) ∈
C∗(N(U)), we get that [h∗(cU )] = [g∗(c)] = c̃ in Hk(N(O1)). Finally, observe that 
h∗(α)([cU ]) = α(c̃) �= 0, as required. �

We are now ready to prove that Ȟk(X, F) is infinite dimensional (Theorem B(2)).

Theorem 5.2. Let G be a finitely generated, relatively hyperbolic group with virtually 
nilpotent peripherals and Bowditch boundary homeomorphic to a sphere Sk+1, for some 
k ≥ 1, and with at least one peripheral subgroup. Let F be a field of characteristic 0. 
Then Ȟk(∂∗G, F) is infinite-dimensional.
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Proof. It suffices to show that, for every finite set of parabolic points F ⊆ S, we have 
the inequality rkHk(S − F, Z) ≤ dim Ȟk(X, F), where X = ∂∗G.

Let U be a convex cover of S−F as in Lemma 3.9. Set O := U|X . To define this cover 
restriction, recall that there is a natural continuous and injective map X → S (though 
it is not an open map).

Let O′ < O be the refinement provided by Lemma 5.1. Finally, let N be the integer 
associated to F by Proposition 3.8, and let δ be a Lebesgue number for the restriction 
O′|XN

.
It suffices to show that Hk(S − F, Z) embeds into

{O′–fine k–cycles}/{O′–fine boundaries of O–fine (k + 1)–chains}

(and hence has smaller rank) and apply Lemma 5.1. By Proposition 3.8, every element of 
Hk(S −F, Z) can be represented by a straight singular cycle c such that disc(c) is δ–fine 
and contained in XN , and hence O′–fine. Since c is a straight cycle and U is a convex 
cover, not only disc(c) but also c itself is U–fine. Lemma 3.9 concludes the proof. �
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